
Tom Kamphans

Models and Algorithms

for Online Exploration

and Search

Rheinische Friedrich-Wilhelms-Universität Bonn

Institut für Informatik I

Models and Algorithms for

Online Exploration and Search

Dissertation

Zur Erlangung des Doktorgrades (Dr. rer. nat.)
der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Thomas Kamphans

Bonn, 2005

Angefertigt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

Gutachter: Prof. Dr. Rolf Klein, Universität Bonn
Prof. Dr. Alejandro López-Ortiz, University of Waterloo, Canada

Tag der mündlichen Prüfung: 04.04.2006

Abstract

This work considers some algorithmic aspects of exploration and search,
two tasks that arise, for example, in the field of motion planning for au-
tonomous mobile robots. We assume that the environment is not known to
the robot in advance, so we deal with online algorithms.

First, we consider a special kind of environments that we call cellular en-
vironments, where the robot’s surrounding is subdivided by an integer grid.
The robot’s task is to visit every cell in this grid at least once. We distinguish
between simple grid polygons (i. e., polygons with no obstacles inside) and
general grid polygons. We show that no online exploration strategy is able
to achieve a competitive factor better than 7

6 for simple grid polygons and
better than 2 for general grid polygons. That is, the path of an online explo-
ration strategy is in the worst case at least 7

6 times (2 times, respectively)
longer than the optimal path that was computed with full knowledge of the
environment. For both cases we develop exploration strategies and show up-
per bounds on their performance. More precisely, for environments without
obstacles we provide a strategy that produces tours of length S ≤ C+ 1

2E−3,
and for environments with obstacles we provide a strategy that is bound by
S ≤ C + 1

2E + 3H + Wcw − 2, where C denotes the number of cells—the
area—, E denotes the number of boundary edges—the perimeter—, H is
the number of obstacles, and Wcw is a measure for the sinuosity of the given
environment. Moreover, we show that the strategy for simple grid polygons
is 4

3 -competitive; that is, the path generated by our strategy is never longer
than 4

3 times the optimal path.
Second, we consider search tasks with error-prone robots and give per-

formance results that take the robot’s errors into account. The first search
task is to leave an unknown environment using the well-known Pledge al-
gorithm. We give sufficient conditions that ensure a successful application
with an error-prone robot. The second task is the search for a door in a wall
(or a point on a line). We show that a robot that is not aware of making
errors is able to find its goal, if its error is not greater than 33 per cent.
Further, we give an optimal-competitive strategy that takes the maximal
error into account, and generalize our result to searching on m rays.

Last, we examine a new cost measure for search tasks, the search ratio.
The quality of a search path is determined by a worst-case target point—
a point that maximizes among all target points, t, the ratio between the
length of the searcher’s path up to t and the shortest path to t. An op-
timal search path has the minimal search ratio among all search paths in
the given environment. The optimal search ratio—the search ratio of the
optimal search path—is an appropriate measure for the searchability of an
environment. We give a general framework for approximating a path with
optimal search ratio, and apply this framework to simple polygons and grid
polygons. Further, we show that no constant-competitive approximation is
possible for polygons with holes.

What I most of all regret
Is not what I did
But all the things that I’ve left undone

(Justin Sullivan)

Acknowledgments

First of all, I would like to thank my advisor, Prof. Dr. Rolf Klein,
for giving me the opportunity to write this thesis and plenty of valuable
thoughts and advices, Prof. Dr. Alejandro López-Ortiz for accepting to be
the second referee for this work, and Dr. Elmar Langetepe for a great deal
of helpful discussions and bright ideas.

Further, I would like to thank my coauthors and colleagues, Annette
Ebbers-Baumann, Andrea Eubeler, Prof. Dr. Rudolf Fleischer, Ansgar Grüne,
Dr. Christian Icking and Gerhard Trippen—it has been a pleasure to work
with you. I’m also much grateful to our student workers, Jens Behley, Ulrich
Handel and Wolfgang Meiswinkel, for their great help with the GridRobot
applet, Christian Moll for some proofreadings, and Mariele Knepper for her
assistance with administrative tasks.

Above all, warmest thanks to my parents, Friedrich and Brigitte Kamp-
hans for their constant encouragement and continuous support, to my broth-
ers, Stefan and Matthias, and to Dorthe Lübbert for many things beyond
this thesis.

Contents

1 Introduction 1

2 Exploring Cellular Environments 13

2.1 Competitive Complexity . 16

2.2 Exploring Simple Polygons 20

2.2.1 An Exploration Strategy 20

2.2.2 The Analysis of SmartDFS 24

2.3 Exploring Polygons with Holes 37

2.3.1 An Exploration Strategy 37

2.3.2 The Analysis of CellExplore 40

2.4 Concluding Remarks . 58

2.4.1 CellExplore with Optimized Return Path 58

2.4.2 The Solution of Gabriely and Rimon 59

2.4.3 Exploring Three-Dimensional Environments 60

2.4.4 A Simulation Environment 63

2.4.5 Robots with Restricted Orientation 66

2.4.6 Summary . 69

3 Searching with Error-Prone Robots 71

3.1 Leaving an Unknown Maze 72

3.1.1 The Pledge Algorithm 72

3.1.2 Sufficient Conditions 74

3.1.3 Applications . 80

3.1.3.1 Leaving a Maze Using an Error-Prone Com-
pass . 80

3.1.3.2 Exact Free Motion 80

3.1.3.3 (Pseudo-) Orthogonal Scenes 81

3.2 Finding a Door . 85

3.2.1 The Doubling Strategy 85

3.2.2 Modeling the Error . 86

3.2.3 Disregarding the Error 86

3.2.3.1 Reachability 87

3.2.3.2 Competitive Factor 89

II Contents

3.2.4 Taking the Error into Account 91
3.2.5 Error-Prone Searching on m Rays 101

3.3 Summary . 104

4 Optimal Search Paths 107
4.1 Definitions . 109
4.2 Approximating the Optimal Search Path 112

4.2.1 An Approximation Framework 112
4.2.2 Searching Simple Polygons 115

4.3 Hard-Searchable Environments 120
4.3.1 Polygons with Holes 120
4.3.2 Arbitrary Hard Searchable Environments 122

4.4 Summary . 123

5 Conclusions 125

List of Figures 127

Bibliography 131

Index 147

Chapter 1

Introduction

Designing appropriate models is a crucial task in many sciences. This ranges
from concrete models such as scaled reproductions of city parts used by ar-
chitects to determine how a new building fits into the existing surrounding;
over simplifications—for instance, electrical engineers use equivalent circuit
diagrams for complex components such as transistors to simplify the calcu-
lation of voltages and currents in circuits—to highly abstracted models that
map the real world into computable terms and play an import role in com-
puter science and mathematics. Perhaps, the most frequently used model
for real-world matters are graphs, which are used to describe city maps, rail-
road or computer networks, relationships between persons and many other
things, in a way that can be stored in known data structures and handled
with a large number of known algorithms.

All models have in common a certain degree of abstraction and often of
simplification. For example, scaled city models do not show fine details of
the houses, because that does not serve the purpose the models are made
for. And a transistor used for simple on–off switching can be described
with a model that is much simpler than the equivalent circuit diagram for a
transistor serving as HiFi amplifier. The challenge is to find models that are
simple enough, but not too simple, so that it is easy to map a given setting
into the model and it is easy to work with the model, whereas the model
still serves its purpose.

Models in Robot Motion Planning

This work addresses exploration and search, two tasks that arise from the
field of robot motion planning, where we want to compute trajectories for
autonomous mobile robots—vehicles equipped with some kind of intelligence
so they can move around without being steered by a human operator—such
as the robot shown in Figure 1.1. But, although we often talk about robots
and have robots as primary application in mind, all presented algorithms
may be applied by agents of any kind, this may be a person mowing a lawn

2 Chapter 1 Introduction

Figure 1.1: A mobile robot (Activmedia Pioneer P2-AT) equipped with a laser
scanner (Sick).

(in Chapter 2), a person searching a lost item (in Chapter 4), a walker (in
Chapter 3), or even—as Kao et al. introduce a certain search problem—a
cow searching for a feedlot.1 Thus, we use the terms robot, searcher, explorer,
or agent synonymously.

To be able to solve such motion planning tasks we have to formalize
them. That is, we have to design appropriate models for the robot and the
robot’s environment. Further, we want to evaluate the quality of our motion
planning algorithms; thus, we also have to discuss possible ways to model
the costs incurred by an algorithm.

In the following paragraphs, we give attention to commonly used models
for robot motion planning. Further, we briefly review some notions we use in
this work. For more theoretical background we refer the reader to books on
computational geometry or geometric modeling, for example O’Rourke [150,
151], Abramowski and Müller [2], Klein [114, 115], or de Berg et al. [39].
See also the book of Schwartz and Yap [167], as well as the handbooks by
Goodman and O’Rourke [67], and Sack and Urrutia [159].

Environment
First, we have to find an appropriate model for the robot’s environment. In
most applications there are areas in which the robot can move around—the
free space—and areas that are impenetrable for the robot. The latter areas
are called obstacles. The free space may be unbounded or bounded in the
case of a robot moving inside a closed room.

In many applications we want to calculate a path for a robot moving
in a two-dimensional environment, typically a floor plan. In this case the
obstacles and—in the case of a bounded free space—the robot’s work area are
usually modeled by simple polygons. A polygon is a region that is enclosed

1Provided that there will ever be a cow that is able to read this work.

3

(i) (ii) (iii) (iv)

s

Figure 1.2: Several types of polygons: (i) polygon with hole, (ii) simple polygon,
(iii) rectilinear, simple polygon, (iv) grid polygon.

by a closed polygonal chain (i. e., a set of concatenated line segments). If the
polygon is topologically equivalent to a disk; that is, the polygon is enclosed
by a single, nonintersecting polygonal chain, we call the polygon simple.
Note that a simple polygon does not contain any other polygon (hole). A
polygon whose edges meet with internal angles of either π

2 or 3
2π is called

a rectilinear or orthogonal polygon, see Figure 1.2. Environments consisting
of a set of obstacles given by simple polygons are called polygonal scenes.

The robot’s environment may be modeled using also closed curves, or
approximated by an integer grid, see Figure 1.2(iv). We discuss the latter
approach in Chapter 2.

Sometimes it is possible to abstract from the geometry of the real en-
vironment and consider only connections between parts of the surrounding,
such as paths between crossings and dead-ends in a classic example of a
labyrinth. In this case, we may use graphs to model the environment. Fur-
ther, we may give grid polygons, see Figure 1.2(iv), as grid graphs that
consist of one vertex per square and edges between neighboring squares.

Robot
There are many kinds of robots having different sizes, computational abili-
ties, sensors, and drive mechanisms. Thus, we have to decide whether our
robot model has to reproduce the robot’s dimensions, or whether it is suffi-
cient to approximate the robot’s shape, maybe, by a circle. Many algorithms
in robot motion planning completely abstract from the robot’s measures and
deal only with point-shaped robots.

Another important issue is the sensor model. Basically, we distinguish
between blind robots (i. e., robots that are equipped with touch sensors that
allow only the very close environment to be detected by the robot), and
robots that have vision, such as a sonar or a laser scanner. In the idealistic
case, a vision sensor provides the full visibility polygon; that is, the set
of all points in the environment that are visible from the robot’s current
position, see Figure 1.3(i). The visibility, in turn, depends on the type of the
environment. For example, a point, p, inside a simple polygon, P , is visible

4 Chapter 1 Introduction

(i) (ii)

P P

RR

r

Figure 1.3: (i) The visibility polygon (shaded) of P with respect to the robot’s
current position, R, (ii) limited visibility polygon.

from another point, q ∈ P , if the line segment from p to q is completely
contained in P . We may also consider a limited vision sensor; in this case,
the robot gets the intersection of the visibility polygon with a circle whose
radius is determined by the range of the scanner, see Figure 1.3(ii).

Further, we have to regard the computational abilities, essentially the
memory size—is the robot able to store a map of the whole environment, or
is the memory limited to a few words?—, and the motion abilities. The accu-
racy of both the input data and the motion is also a relevant item. Theorists
often assume that robots are error free. On the other hand, practitioners
often give only statistically or empirically obtained correctness results and
performance guarantees (e.g. [12, 13, 119, 120, 127, 186, 189]). There are ba-
sically three approaches to deal with errors: The first objective is to reduce
errors; either by reducing odometry errors (e.g., Chong and Kleeman [35],
Borenstein and Feng [21, 22]) or by avoiding faulty data by using more re-
liable input (e.g., preferring angular measures over distance measures; see
Lumelsky and Tiwari [138], Angluin et al. [7], Demaine et al. [40], or LaValle
et al. [126]). Dudek et al. [47] presented an exploration strategy for a group
of robots, where the moving robot uses the other robots as landmarks. The
second approach is to tolerate errors and show that the strategy is robust
under certain types of errors (e.g., Noborio et al. [144, 145, 146], López-
Ortiz and Schuierer [130]). Another method is to detect errors and react
appropriately (e.g., Byrne et al. [28], Zelinsky [190], or Stentz [174, 175]).
We consider robots with errors in Chapter 3.

Costs
Given two algorithms, how can we determine which one is better suited? To
decide this question, we need appropriate models for the quality of an algo-
rithm. A commonly used model for the costs of an algorithm is to account
its need for resources—usually computing time and memory allocation—in
terms of the input size using the well-known order notation; see, for exam-

5

ple, Knuth [117]. Sometimes, the size of the output is considered, too. Such
algorithms are called output sensitive.

Keeping computing time and memory allocation low is often a secondary
goal in robotics. Mobile robots are powered by rechargeable batteries, and
as the power consumption of the robot’s motors dominates the power con-
sumption of the onboard computer, we are primarily interested in paths
that are as short as possible. Sometimes, also other cost measures such as
turning or scanning costs are considered.

In robot motion planning we often deal with algorithms that do not
have all the information needed to compute an optimal solution, such as
a robot moving in an unknown terrain. While the robot moves around in
the terrain, it learns the environment by and by. This kind of algorithms is
called online algorithms, in contrast to offline algorithms that compute the
solution having the full information.

The competitive ratio is a commonly used performance measure for online
algorithms. We compare the costs of an online algorithm with the costs of an
optimal offline algorithm. If this ratio is bounded by a constant for arbitrary
instances of the problem, we call the algorithm competitive. More precisely:

Definition 1.1 Let ONL be an online algorithm. We call ONL competitive
with factor C (or C-competitive for short), if there exists a constant, A, so
that for every possible input to ONL

|ONL| ≤ C · |OPT| + A

holds, where OPT denotes the optimal solution, and |ONL| and |OPT| the
costs of ONL and OPT, respectively.

The constant A in Definition 1.1 ensures a bounded ratio for certain
start situations. Imagine a searcher located in the origin and searching for
goal on the real line. The search strategy moves the searcher one unit to
the right in the first step. Now, a malicious adversary reveals the goal at
distance ε > 0 to the left of the searcher’s start. Since ε can be arbitrarily
small, our competitive factor, C, goes to infinity. To avoid this, we define
A = 1. Alternatively, we may introduce certain assumptions on the start
situation; for example, we may require that the distance to the goal is at
least 1.

The work of Sleator and Tarjan [173] concerning self-organizing lists
and paging was one of the first using competitive analysis. Since then,
online algorithms have been studied in many different areas, such as an
online version of the traveling salesman problem (Ausiello et al. [10]), online
leasing (El-Yaniv [50]), seat reservation (Boyar and Larsen [25]), or buying
a Bahncard2 (Fleischer [58]). See also the books by Fiat and Woeginger [57],
and Borodin and El-Yaniv [23].

2A card for sales discount for the German railroad.

6 Chapter 1 Introduction

A more general understanding of competitivity is to introduce a function,
f(n), instead of the constant C, where n denotes the size of the input.
Thus, we are able to classify an algorithm, for example, as

√
n-competitive.

However, in this work we use the term competitive as defined in Definition 1.1
(i. e., constant competitive) unless explicitly mentioned.

The competitive factor of a certain strategy gives us an upper bound for
the competitive complexity of the considered problem; that is, we know that
the problem cannot be harder, because we are already able to solve it with
the given competitive factor. On the other hand, we may be able to give
certain scenarios in which every possible strategy cannot be better than a
proven factor. These settings are called lower bounds. If the competitive
factor of a strategy exactly matches the corresponding lower bound, we
know that we can not improve the strategy—at least not in the competitive
framework. Thus, we call such a strategy optimal competitive.

In the usual competitive framework we compare an online algorithm to
the optimal solution. Of course, there are other possibilities, such as the
excess distance ratio, see Berman [15], that compares the online strategy to
certain dimensions of the environment. Lumelsky et al. [137, 135] analyzed
their solutions in comparison to the sum of the obstacles’ perimeters. We
use a similar approach in Chapter 2. Another model is the search ratio, see
Koutsoupias et al. [118], Fleischer et al. [59], and Chapter 4.

Robot Motion Planning Tasks

Path-planning strategies for mobile autonomous robots in different settings
have attracted a lot of researchers. The settings differ in the model for
the robot and the environment, online and offline settings, and, of course,
the robot’s task. Basically, four types of path planning tasks have been
investigated, namely navigation, searching, exploration, and localization.

In the navigation task, the robot has to find a path to a target—not
necessarily a point—whose location is known to the robot. In contrary,
searching means that the target is unknown to the robot. Note that naviga-
tion in the offline setting amounts to finding a (shortest) obstacle-avoiding
path from the start to the target.

Exploration refers to the task of finding a path, such that every point in
the environment is seen from at least one point on the path. The details
depend on the type of environment and the robot. For example, a robot
equipped with an unlimited vision sensor moving in a simple polygon, P ,
has to find a path, π, so that for every point p ∈ P there is at least one
point p′ ∈ π so that p is visible from p′; that is, the line segment from p to
p′ is completely contained in P .

At first view, search and exploration seem to be closely related. After
all, every search strategy has to inspect the whole environment; otherwise,
the target could be located in an unseen part and the search fails. Therefore,

7

every search strategy is also an exploration strategy. The main difference
is that an online exploration strategy competes merely against the optimal
offline exploration, whereas a search strategy is compared to the shortest
path from the start to the target, which may be much shorter than an
optimal exploration path. In Chapter 4 we discuss this difference in more
detail. In particular, we show that there is, anyway, a close relation between
exploration and search.

Some authors distinguish between exploration—seeing every point in
the environment, possibly from far away, e. g. for map-making purposes—
and covering, where every part in the environment has to be visited by
the robot, maybe, to accomplish some work like lawn-mowing. However, for
robots without vision both tasks are the same. Another slight variation is to
inspect only the obstacles’ boundaries instead of the whole environment—
sometimes, this task is called mapping. Similar to searching, the online
tasks are identical, but an offline mapping path may be shorter than an
offline exploration path, because the former is allowed to skip hidden, but
obstacle-free areas.

In the localization setting, the environment is known in advance, but the
robot does not know its current position inside the map; imagine a cleaning
device that is positioned somewhere in an office-building and powered on.

In the following, we briefly review some previous results in algorith-
mic motion planning. For a general overview on theoretical online motion
planning see the survey articles by Rao et al. [158], Icking and Klein [90],
Berman [15], Trippen [184], and Icking et al. [88].

We concentrate on motion planning in a geometric perspective, and dis-
regard other—no less interesting—techniques such as the potential field
method, where the motion planning problem is modeled by electrostatic-
like attraction and repulsion, or the probabilistic roadmap approach, see,
e. g., Overmars [152], Švestka and Overmars [177], Kavraki et al. [110], and
the survey by Overmars [153]. These topics are addressed in the surveys
by Hwang and Ahuja [85]; Halperin, Kavraki, and Latombe [73, 74]; and
the comprehensive book by Latombe [123]. Further, we restrict ourself to
planning tasks for a single robot.

Needless to mention, robot navigation tasks have also been studied from
a rather practical point of view by numerous authors such as Rao et al. [157],
VanderHeide and Rao [186], Lee and Recce [127], Kuipers and Byun [119,
120], Batalin and Sukhatme [12, 13], Taylor and Kriegman [183]—just to list
a few of them. See also the book by Choset et al. [37], the forthcoming book
by LaValle [125], or the survey by Choset [36] on recent results on covering.

Navigation
Among the first navigation strategies were the Bug algorithms by Lumelsky
and Stepanov [137] for finding a target with a point-shaped robot using

8 Chapter 1 Introduction

a touch sensor and a compass directed towards the target. Many Bug-
like strategies have been proposed since then, such as Sankaranarayanan
and Vidyasagar [160], or Rajko and LaValle [155]. A Bug-like algorithm
was also used for the Mars Rover project, see Laubach and Burdick [124].
Bug strategies for robots with a (limited) vision sensor were introduced by
Lumelsky and Skewis [136].

Navigation in polygonal scenes and graphs was studied by Papadim-
itriou and Yannakakis [154]. They showed that no strategy can achieve a
constant competitive factor in a polygonal scene if the obstacles have an
unbounded aspect ratio. For scenes with square obstacles they gave a lower
bound of 3

2 , and suggested strategies that achieve this ratio asymptotically.
Blum, Raghavan, and Schieber [19] considered—among other things—the
wall problem, where the target is an infinite line, and presented an optimal
O(

√
n)-competitive algorithm for this problem. Berman et al. [16] gave a

randomized O(n
4
9 log n)-competitive navigation strategy.

The offline navigation task amounts to compute a (shortest) path from
s to t. For point-shaped robots in a polygonal scene this is possible in
time O(n log n) (Hershberger and Suri [80]), inside a simple polygon in time
O(log n + k) after an O(n)-preprocessing, where k denotes the number of
segments on the shortest path (Guibas and Hershberger [71]). Computing a
shortest path in a scene with polyhedral obstacles is known to be NP-hard,
see Canny and Reif [29]. Path planning for non–point-shaped robots were
considered, for example, by Icking et al. [96] for line segments; Ó’Dúnlaing
and Yap [149] for discs; and Kedem, Sharir, and Toledo [111, 112] for convex
robots. See also the surveys by Schwartz and Sharir [165, 166], Sharir [170],
and Mitchell [141, 142], as well as the book by Agarwal and Sharir [171].

Searching
Searching has been studied broadly in the context of game theory. Two
players, a searcher and a hider, compete against each other. The searcher
moves around in the environment and tries to find the hider as soon as
possible, whereas the objective of the hider is to maximize the search time.
Search games date back to the works of Koopmann in 1946 and Bellmann in
1956, see the books of Gal [64], and Alpern and Gal [6] for a comprehensive
overview on search games. Claude Shannon [168] constructed a machine that
moved an electrical “finger” through a labyrinth to find a target. Although
his search strategy is rather simple, the implementation of the algorithm
was very remarkable at that time. Labyrinth searching was also considered
in the context of automata theory; see for instance Blum and Kozen [20].
Obviously, labyrinths can be modeled as graphs; thus, labyrinth searching
amounts to searching in a graph. This was studied by Tarry and Tremaux
back in the nineteenth century; their algorithms led to the well-known depth-
first search (DFS) and breadth-first search (BFS) graph traversals.

9

The presumably most simple search task is the search for a point on an
infinite line. The searcher may be a robot searching for a door in a long wall,
or a walker searching for a bridge across a river. Beck and Newman [14],
Gal [64], and independently Baeza-Yates, Culberson, and Rawlins [11] stud-
ied this problem. Both works introduced the doubling strategy and showed
that an optimal competitive factor of 9 is achievable. The doubling strategy
is a fundamental paradigm for other search problems. For a more detailed
description of the doubling strategy see Section 3.2.

Searching on the line was generalized to searching on m rays emanat-
ing from a single source, see Gal [64] and Baeza-Yates et al. [11]. Many
other variants were discussed since then, for example m-ray searching with
restricted goal distance (Hipke et al. [82], Langetepe [122], López-Ortiz and
Schuierer [162, 131]), m-ray searching with additional turn costs (Demaine
et al. [41]), parallel m-ray searching (Kao et al. [108], Hammar et al. [76],
López-Ortiz and Schuierer [133]) or randomized searching (Schuierer [163],
Kao et al. [109]). Furthermore, some of the problems were again rediscovered
by Jaillet et al. [98].

Whereas there is no constant-competitive strategy for searching in an ar-
bitrary simple polygon, see Figure 4.1 on page 108, Klein [113] introduced a
special kind of simple polygons, the streets, that allow constant-competitive
searching. Icking, Klein, and Langetepe [93], and independently Schuierer
and Semrau [164] presented a strategy with an optimal competitive factor of√

2, see also Icking et al. [94], Icking [86], and Langetepe [122]. López-Ortiz
and Schuierer [130] gave search strategy for streets that is robust under
small navigational errors. The works mentioned so far assumed that the
start and the target are the two points that are used to define a street.
Bröcker and López-Ortiz [26] considered searching in streets with arbitrary
start and target points.

Kleinberg [116] gave a O(k)-competitive search strategy for rectilinear
simple polygons, where k denotes the number of essential cuts.3 Search-
ing in arbitrary simple polygons was considered by Schuierer [161], and
Klein [114, 115]; their strategies are O(n)-competitive for a polygon with
n vertices. Searching in polygonal scenes was considered, for example, by
Kalyanasundaram and Pruhs [99].

Because there is no constant-competitive search strategy in trees and
graphs, Koutsoupias, Papadimitriou, and Yannakakis [118] introduced the
search ratio of a tree or graph as the best achievable competitive factor for a
search in the given environment. We attend to the search ratio in Chapter 4.

In a special case of searching, we just want to leave an unknown scene;
that is, we search for the boundary of the scene. This problem can be solved
using the algorithm of Pledge, see Abelson and diSessa [1], and Hemmer-
ling [79]. We consider the Pledge algorithm in Section 3.1.

3See Section 4.2.2 for the definition of essential cuts.

10 Chapter 1 Introduction

Among other search tasks are the search for the kernel of a polygon
(Icking et al. [92], Langetepe [122]), searching on a lattice (Baeza-Yates
et al. [11], López-Ortiz and Sweet [134]), searching in a star polygon (López-
Ortiz and Schuierer [132]), searching for a line (Gal [64] and Baeza-Yates
et al. [11]) or a ray (Eubeler et al. [54]) in the plane. Usually, the path
length or the search time is used to measure the quality of a search strategy.
Fekete, Klein, and Nüchter [56] considered the number of scans to measure
the costs. More search problems are presented, for example, in López-Ortiz
[128] and Alpern and Gal [6]. See also the book by Ahlswede and Wegener
[3] on (nongeometric) search problems.

Exploration
The task of exploring an unknown simple polygon using a point-shaped robot
equipped with an unlimited, error-free vision system4 starting in a point, s,
on the polygon’s boundary was first considered by Deng, Kameda and Pa-
padimitriou [42, 43]. Their strategy is optimal for rectilinear simple polygons
with respect to the optimal path in the L1-metric and

√
2-competitive with

respect to the optimum in the L2-metric. For nonrectilinear simple polygons
they claimed a factor of 2016. With the same assumptions, Hoffmann, Ick-
ing, Klein, and Kriegel introduced a 133-competitive strategy [83] that was
finally improved to a 26.5-competitive algorithm called PolyExplore, see [84].
We will briefly review these algorithms in Section 4.2.2. Albers, Kursawe,
and Schuierer [5] showed a lower bound of Ω(

√
n) for the exploration of poly-

gons with holes. For the case that s is an arbitrary point inside a rectilinear
simple polygon, Kleinberg [116] gave a lower bound of 5

4 and a randomized
5
4 -competitive exploration strategy.

The optimal offline exploration path in a simple polygon starting in
a fixed point, s, on the polygon’s boundary is also known as the shortest
watchman route, and was first considered by Chin and Ntafos [32]. They pro-
vided an O(n)-algorithm for shortest watchman routes in rectilinear simple
polygons with n vertices. Some work has been done on shortest watchman
routes, see [33, 179, 75, 182, 181]—some of them vainly tried to generalize
the algorithm by Chin and Ntafos—, until Dror, Efrat, Lubiw and Mitchell
[46] presented an O(n3 log n)-algorithm for shortest watchman routes in ar-
bitrary simple polygons. Similar problems are the floating SWR (i. e., the
shortest route without a fixed start point), see Carlsson, Jonsson, and Nils-
son [31], and Tan [178]; or the shortest watchman path with different start-
and end points (Carlsson and Jonsson [30]). Other variants are, for instance,
zookeeper routes5 (Chin and Ntafos [34], Bespamyatnikh [17]), safari routes6

4Thus, the full visibility polygon with respect to the robot’s current position is provided.
5Given a simple polygon, P , a set, P , of convex polygons inside P , and a start point;

find the shortest route that touches each polygon from P but enters none of them.
6Basically the same as zookeeper routes, but it is allowed to enter the polygons in P .

11

(Tan and Hirata [180]), aquarium keeper routes7 (Czyzowicz et al. [38]), or
robber routes8 (Ntafos [147]).

Betke, Rivest, and Singh [18] introduced the piecemeal exploration, where
the robot has to interrupt the exploration every now and then so as to return
to the start point, for example, to refuel. They presented two constant-
competitive strategies for the piecemeal exploration of grid graphs9 with
rectangular obstacles. In this case, exploration means that the robot has to
visit of every node as well as every edge. Their result was generalized to
arbitrary rectilinear obstacles by Albers, Kursawe, and Schuierer [5].

For the exploration of graphs see Kalyanasundaram and Pruhs [100],
Albers and Henzinger [4], Deng and Papadimitriou [44], and Fleischer and
Trippen [62]. Mapping was considered, for example, by Kalyanasundaram
and Pruhs [99]. Lumelsky, Mukhopadhyay, and Sun [135] provided two
algorithms for mapping unknown polygonal scenes, and analyzed their per-
formance basically in terms of the obstacles’ perimeters.

Localization
Guibas, Motwani, and Raghavan [72] and independently Bose, Lubiw, and
Munro [24] considered the problem of finding the set of possible locations of
a robot inside a known map based on the robot’s visibility polygon. Moving
the robot eliminates wrong guesses in the set of possible locations. Dudek,
Romanik, and Whitesides [48] presented an optimal competitive strategy to
find a path that leads to an uniquely determined location. Fleischer et al. [61]
presented an optimal O(

√
n)-competitive algorithm for the same problem

in trees. Furthermore, Demaine, López-Ortiz and Munro [40] considered
localization with help of landmarks. In the robotics community, localization
is often solved using probablistic approaches; see, for example, Burgard
et al. [27].

7The shortest route that visits every edge of a simple polygon.
8Given a simple polygon, P , a set, T , of points inside P (the threats), and a set, S , of

line segments on the boundary of P (the sights); find the shortest route that sees at least
one point of each line segment in S , but is not seen from any point in T .

9A graph with only axis-parallel, unit-sized edges, see Chapter 2.

12 Chapter 1 Introduction

Overview of this Work

This work is organized as follows. In Chapter 2 we consider the exploration
task for a simplified environment model: A robot without vision moves in a
polygon that consists of square-shaped cells. We distinguish between envi-
ronments with and without holes. For both settings we give lower bounds,
suggest exploration algorithms, and analyze them in terms of the polygon’s
dimensions. For polygons without holes we also analyze the exploration
strategy in the competitive framework. A preliminary version of the strat-
egy for polygons with holes was presented at the 16th European Workshop
on Computational Geometry (Euro-CG 2000) [87], see also [88]. The ex-
ploration of simple grid polygons was presented at the 11th International
Computing and Combinatorics Conference (COCOON 2005) [89].

Chapter 3 deals with error-prone robots. First, we consider the Pledge
algorithm and develop conditions that guarantee a success, even if the robot
is erroneous. Amongst others we show that a robot using a compass with
an accuracy of only ±π

2 is still able to leave an unknown maze. Afterward,
we analyze the usual doubling strategy for searching a point on a line with
an erroneous robot, and give an optimal competitive search strategy for
the error-prone case. Further, we study the search on m-rays. Preliminary
versions of these topics were presented at the First Workshop on Approxi-
mation and Online Algorithms (WAOA 2003) [103], the 20th Euro-CG 2004
[104], and the Fourth International Workshop on Efficient and Experimental
Algorithms (WEA 2005) [106]. See also the technical report [107].

A special technique for measuring search costs, the search ratio, is cov-
ered in Chapter 4. We give a general framework for approximating a path
with optimal search ratio, and apply this framework to simple polygons.
Further, we show that no constant-competitive approximation is possible
for polygons with holes. Preliminary versions have been published in the
abstracts of the 20th Euro-CG 2004 [60] and in proceedings of the 12th
Annual European Symposium on Algorithms (ESA 2004) [59].

Some of the results presented in the chapters 2–4 also appeared in [102].

Chapter 2

Exploring Cellular

Environments

The exploration of unknown environments is—as already mentioned in the
introduction—one of the basic tasks of autonomous mobile robots. In this
chapter, we introduce a quite simple model for the robot and its environ-
ment: The robot is short sighted, and the surrounding is subdivided by a
rectangular integer grid. Thus, the robot moves in a cellular environment,
similar to a chessboard or squared writing paper, see Figure 2.1. In spite of
the very basic sensors, we assume that the robot is equipped with enough
memory to store a map of visited cells.

Essentially, there are two motivations for using this model instead of a
robot that moves in an arbitrary (simple) polygon and is equipped with an
ideal vision system that provides the full visibility polygon:

• In practice, there is no ideal vision system. Even the range of realistic
laser scanners is limited to a few meters, see, for example, [172] or [81].
Therefore, the robot has to move towards areas in farther distance to
explore them. In our model, the fineness of the grid (i. e., the size of a
single cell in the environment) is determined by the reliable range of
the laser scanner.

• Service robots like lawn mowers or cleaning devices need to get close
to the parts of the environment they want to visit. Moreover, robots of
this kind have to be rather cheap to be accepted by customers. Hence,
such robots are not equipped with an expensive vision system. In this
setting, the size of the robot or its tool defines the size of a cell, and
we subdivide the environment according to the cell size.

We call the set of all cells that can be reached by the robot a grid polygon,
or polygon for short. The robot starts from a cell, s, inside the polygon and
adjacent to polygon’s boundary. The robot’s sensors provide the information

14 Chapter 2 Exploring Cellular Environments

(i) (ii)

ss

Figure 2.1: (i) An example exploration tour, (ii) a shortest TSP tour for the same
polygon. The black cells show obstacles inside the polygon.

which of the four neighbors of the currently occupied cell do not belong to
the polygon and which ones do. The robot can enter the latter cells. The
task is to visit every cell inside the polygon and to return to the start cell.1

The example in Figure 2.1(i) shows a tour that visits each cell at least once,
but some cells even more. We are interested in a short exploration tour, so
we would like to keep the number of additional cell visits small.

The equivalent offline problem—in this setting, the environment is known
to the robot—, results in the construction of a shortest traveling salesman
tour on the polygon cells, see Figure 2.1(ii). For polygons with obstacles, the
problem of finding such a minimum length tour is known to be NP-hard, see
Itai et al. [97]. There are 1+ ε approximation schemes by Grigni et al. [69],
Arora [9], and Mitchell [140], and a 53

40 approximation by Arkin et al. [8].

In polygons without obstacles, the complexity of constructing a mini-
mum length tour offline seems to be open. Ntafos [148] and Arkin et al. [8]
showed how to approximate the minimum length tour with factors of 4

3 and
6
5 , respectively. Umans and Lenhart [185] provided an O(C4) algorithm for
deciding if there exists a Hamiltonian cycle, that is, a tour that visits each
of the C cells of a polygon exactly once. For the related problem of Hamilto-
nian paths (i. e., a path with different start and end positions), Everett [55]
presented a polynomial algorithm for certain grid graphs.

We are interested in the online version of the cell exploration problem.
The task of exploring a grid polygon with holes was independently considered
by Gabriely and Rimon [63]. They introduce a somehow artificial robot
model by distinguishing between the robot and its tool, see Section 2.4.2.
This model allows a smart analysis yielding an upper bound of C+B, where

1Sometimes, this task is also called covering.

15

C denotes the number of cells and B the number of boundary cells. However,
this bound is generally larger than our bound, except for corridors of width
1, in which both bounds are the same. This may justify our more detailed
analysis of the strategy. The piecemeal exploration of grid graphs2 was
studied by Betke et al. [18] and Albers et al. [5]. Note that their objective is
to visit every node and every edge, whereas we require a complete coverage
of only the cells. Subdividing the robot’s environment into grid cells is used
also in the robotics community, see, for example, Moravec and Elfes [143],
and Elfes [51].

In the following, we give some lower bounds on the problem, see Sec-
tion 2.1. Further, we consider the exploration of simple grid polygons in
Section 2.2 and the case of polygons with holes in Section 2.3. But first, we
want to give a more detailed description of our environments.

(ii)(i)

Figure 2.2: (i) Polygon with 23 cells, 38 edges and one(!) hole (black cells), (ii) the
robot can determine which of the 4 adjacent cells are free, and enter an adjacent
free cell.

Definition 2.1 A cell is a basic block in our environment, defined by a
tuple (x, y) ∈ IN2. A cell is either free and can be visited by the robot, or
blocked (i. e., unaccessible for the robot).3 We call two cells c1 = (x1, y1), c2 =
(x2, y2) adjacent or neighboring, if they share a common edge (i. e., if |x1 −
x2| + |y1 − y2| = 1 holds), and touching, if they share a common edge or
corner.

A path, π, from a cell s to a cell t is a sequence of free cells s = c1, . . . , cn =
t where ci and ci+1 are adjacent for i = 1, . . . , n−1. Let |π| denote the length
of π. We assume that the cells have unit size, so the length of the path is
equal to the number of steps from cell to cell that the robot walks.

A grid polygon, P , is a connected set of free cells; that is, for every
c1, c2 ∈ P exists a path from c1 to c2 that lies completely in P .

We call a set of touching blocked cells that are completely surrounded
by free cells an obstacle or hole, see Figure 2.2. Polygons without holes are
called simple polygons.

2The grid graph corresponding to a grid polygon, P , consists of one node for every free
cell in P . Two nodes are connected by an edge, if their corresponding cells are adjacent.

3In the following, we sometimes use the terms free cells and cells synonymously.

16 Chapter 2 Exploring Cellular Environments

E = 86 = 2C E = 34 << 2C

C = 43

Figure 2.3: The perimeter, E, is used to distinguish between thin and thick envi-
ronments.

We analyze the performance of an exploration strategy using some pa-
rameters of the grid polygon. In addition to the area, C, of a polygon we
introduce the perimeter, E. C is the number of free cells and E is the total
number of edges that appear between a free cell and a blocked cell, see, for
example, Figure 2.2 or Figure 2.3. We use E to distinguish between thin and
thick environments, see Section 2.1. In Section 2.3.2 we introduce another
parameter, the sinuosity Wcw, to distinguish between straight and twisted
polygons.

2.1 Competitive Complexity

We are interested in an online exploration. In this setting, the environment
is not known to the robot in advance. Thus, the first question is whether
the robot is still able to approximate the optimum solution up to a constant
factor in this setting. There is a quick and rather simple answer to this
question:

Theorem 2.2 The competitive complexity of exploring an unknown cellular
environment with obstacles is equal to 2.

Proof. Even if the environment is unknown we can apply a simple depth-
first search algorithm (DFS) to the grid graph. This results in a complete
exploration in 2C−2 steps. The shortest tour needs at least C steps to visit
all cells and to return to s, so DFS is competitive with a factor of 2.

On the other hand, 2 is also a lower bound for the competitive factor of
any strategy. To prove this, we construct a special grid polygon depending
on the behavior of the strategy. The start position, s, is located in a long
corridor of width 1. We fix a large number, Q, and observe how the strategy
explores this corridor. Two cases occur.

Case 1: The robot eventually returns to s after walking at least Q and
at most 2Q steps. At this time, we close the corridor with two unvisited

2.1 Competitive Complexity 17

cells, one at each end, see Figure 2.4(i). Let R be the number of cells visited
so far. The robot has already walked at least 2R−2 steps and needs another
2R steps to visit the two remaining cells and to return to s, whereas the
shortest tour needs only 2R steps to accomplish this task.

R

s

e′

b

(i)

(ii)

R′

s

R

e

Figure 2.4: A lower bound of 2 for the exploration of grid polygons.

Case 2: In the remaining case the robot concentrates—more or less—
on one end of the corridor. Let R be the number of cells visited after 2Q
steps. Now, we add a bifurcation at a cell b immediately behind the farthest
visited cell in the corridor, see Figure 2.4(ii). Two paths arise, which turn
back and run parallel to the long corridor. If the robots returns to s before
exploring one of the two paths an argument analogous to case 1 applies.
Otherwise, one of the two paths will eventually be explored up to the cell
e where it turns out that this corridor is connected to the other end of the
first corridor. At this time, the other path is defined to be a dead end of
length R′, which closes just one cell behind the last visited cell e′.

From e the robot still has to walk to the other end of the corridor, to
visit the dead end, and to return to s. Altogether, it will have walked at
least four times the length of the corridor, R, plus four times the length
of the dead end, R′. The optimal path needs only 2R + 2R′, apart from a
constant number of steps for the vertical segments.

In any case, the lower bound for the number of steps tends to 2 while Q
goes to infinity. 2

We cannot apply Theorem 2.2 to simple polygons, because we used a polygon
with a hole to show the lower bound. The following lower bound holds for
simple polygons.

Theorem 2.3 Every strategy for the exploration of a simple grid polygon
with C cells needs at least 7

6 C steps.

Proof. We assume that the robot starts in a corner of the polygon, see
Figure 2.5(i) where 4 denotes the robot’s position. Let us assume, the

18 Chapter 2 Exploring Cellular Environments

s

ssss

(ii) (iii)

(vii)(vi)(v)(iv)

(i)

s

s

Figure 2.5: A lower bound for the exploration of simple polygons. The dashed lines
show the optimal solution.

strategy decides to walk one step to the east—if the strategy walks to the
south we use a mirrored construction. For the second step, the strategy
has two possibilities: Either it leaves the wall with a step to the south, see
Figure 2.5(ii), or it continues to follow the wall with a further step to the
east, see Figure 2.5(iii). In the first case, we close the polygon as shown
in Figure 2.5(iv). The robot needs at least 8 steps to explore this polygon,
but the optimal strategy needs only 6 steps yielding a factor of 8

6 ≈ 1.3. In
the second case we proceed as follows. If the robot leaves the boundary, we
close the polygon as shown in Figure 2.5(v) and (vi). The robot needs 12
step, but 10 steps are sufficient. In the most interesting case, the robot still
follows the wall, see Figure 2.5(vii). In this case, the robot will need at least
28 steps to explore this polygon, whereas an optimal strategy needs only 24
steps. This leaves us with a factor of 28

24 = 7
6 ≈ 1.16.

We can easily extend this pattern to build polygons of arbitrary size
by repeating the preceding construction several times using the entry and
exit cells denoted by the arrows in Figure 2.5(iv)–(vii). As soon as the robot
leaves one block, it enters the start cell of the next block and the game starts

2.1 Competitive Complexity 19

again; that is, we build the next block depending on the robot’s behavior.
Note that this construction cannot lead to overlapping polygons or polygons
with holes, because the polygon always extends to the same direction. 2

Improvement

s s s

OptimalDFS

Figure 2.6: DFS is not the best possible strategy.

Even though we have seen in Theorem 2.2 that the simple DFS strategy
already achieves the optimal competitive factor in polygons with holes, DFS
is not the best possible exploration strategy! There is no reason to visit each
cell twice just because this is required in some special situations like dead
ends of width 1. Instead, a strategy should make use of wider areas, see
Figure 2.6.

We use the perimeter, E, to distinguish between thin environments that
have many corridors of width 1, and thick environments that have wider
areas, see Figure 2.3 on page 16. In the following sections we present strate-
gies that explore grid polygons using no more than roughly C + 1

2E steps.
Since all cells in the environment have to be visited, C is a lower bound on
the number of steps that are needed to explore the whole polygon and to
return to s.4 Thus, ≈ 1

2E is an upper bound for the number of additional

cell visits. For thick environments, the value of E is in O(
√

C), so that the
number of additional cell visits is substantially smaller than the number of
free cells. Only for polygons that do not contain any 2×2 square of free cells,
E achieves its maximum value of 2(C + 1), and our upper bound is equal
to 2C − 2, which is the cost of applying DFS. But in this case one cannot
do better, because even the optimal offline strategy needs that number of
steps. In other cases, our strategies are more efficient than DFS.

4More precisely, we need at least C − 1 steps to visit every cell, and at least 1 step to
return to s.

20 Chapter 2 Exploring Cellular Environments

2.2 Exploring Simple Polygons

We have seen in the previous section that a simple DFS traversal achieves
a competitive factor of 2. Because the lower bound for simple grid poly-
gons is substantially smaller, there may be a strategy that yields a better
factor. Indeed, we can improve the DFS strategy. In this section, we give
a precise description of DFS and present two improvements that lead to a
4
3 -competitive exploration strategy for simple polygons.

2.2.1 An Exploration Strategy

There are four possible directions—north, south, east and west—for the
robot to move from one cell to an adjacent cell. We use the command
move(dir) to execute the actual motion of the robot. The function un-
explored(dir) returns true, if the cell in the given direction seen from the
robot’s current position is not yet visited, and false otherwise. For a given
direction dir, cw(dir) denotes the direction turned 90◦ clockwise, ccw(dir)
the direction turned 90◦ counterclockwise, and reverse(dir) the direction
turned by 180◦.

Using these basic commands, the simple DFS strategy can be imple-
mented as shown in Algorithm 2.1. For every cell that is entered in direction
dir, the robot tries to visit the adjacent cells in clockwise order, see the pro-
cedure ExploreCell. If the adjacent cell is still unexplored, the robot enters
this cell, recursively calls ExploreCell, and walks back, see the procedure Ex-
ploreStep. Altogether, the polygon is explored following the left-hand rule:
The robot proceeds from one unexplored cell to the next while the polygon’s
boundary or the explored cells are always to its left hand side.

Obviously, all cells are visited, because the graph is connected, and the
whole path consists of 2C−2 steps, because each cell—except for the start—
is entered exactly once by the first move statement, and left exactly once by
the second move statement in the procedure ExploreStep.

sc2

c1

DFS
improved DFS

Figure 2.7: First improvement to DFS: Return directly to those cells that still have
unexplored neighbors.

The first improvement to the simple DFS is to return directly to those
cells that have unexplored neighbors. See, for example, Figure 2.7: After
the robot has reached the cell c1, DFS walks to c2 through the completely

2.2 Exploring Simple Polygons 21

Algorithm 2.1 DFS

DFS(P , start):

Choose direction dir , so that reverse(dir) points to a blocked cell;
ExploreCell(dir);

ExploreCell(dir):

// Left-Hand Rule:
ExploreStep(ccw(dir));
ExploreStep(dir);
ExploreStep(cw(dir));

ExploreStep(dir):

if unexplored(dir) then
move(dir);
ExploreCell(dir);
move(reverse(dir));

end if

explored corridor of width 2. A more efficient return path walks on a shortest
path from c1 to c2. Note that the robot can use for this shortest path only
cells that are already known. With this modification, the robot’s position
might change between two calls of ExploreStep. Therefore, the procedure
ExploreCell has to store the current position, and the robot has to walk on
the shortest path to this cell, see the procedure ExploreStep in Algorithm 2.2.
The function unexplored(cell, dir) returns true, if the cell in direction dir
from cell is not yet visited.

c2 s

c1

Figure 2.8: Second improvement to DFS: Detect polygon splits.

Now, observe the polygon shown in Figure 2.8. DFS completely sur-
rounds the polygon, returns to c2 and explores the left part of the polygon.
After this, it walks to c1 and explores the right part. Altogether, the robot
walks four times through the narrow corridor. A more clever solution would
explore the right part immediately after the first visit of c1, and continue
with the left part after this. This solution would walk only two times through
the corridor in the middle! The cell c1 has the property that the graph of

22 Chapter 2 Exploring Cellular Environments

unvisited cells splits into two components after c1 is explored. We call cells
like this split cells. The second improvement to DFS is to recognize split cells
and diverge from the left-hand rule when a split cell is detected. Essentially,
we want to split the set of cells into several components, which are finished
in the reversed order of their distances to the start cell. The detection and
handling of split cells is specified in Section 2.2.2. Algorithm 2.2 resumes
both improvements to DFS.

s

(i)

s

(ii)

Figure 2.9: Straightforward strategies are not better than SmartDFS.

Note that the straightforward strategy Visit all boundary cells and cal-
culate the optimal offline path for the rest of the polygon does not achieve a
competitive factor better than 2. For example, in Figure 2.9(i) this strategy
visits almost every boundary cell twice, whereas SmartDFS visits only one
cell twice. Even if we extend the simple strategy to detect split cells while
visiting the boundary cells, we can not achieve a factor better than 4

3 . A
lower bound on the performace of this strategy is a corridor of width 3,
see Figure 2.9(ii). Moreover, it is not known whether the offline strategy is
NP-hard for simple polygons.

2.2 Exploring Simple Polygons 23

Algorithm 2.2 SmartDFS

SmartDFS(P , start):

Choose direction dir for the robot, so that reverse(dir) points to
a blocked cell;

ExploreCell(dir);
Walk on the shortest path to the start cell;

ExploreCell(dir):

Mark the current cell with the number of the current layer;
base := current position;
if not isSplitCell(base) then

// Left-Hand Rule:
ExploreStep(base, ccw(dir));
ExploreStep(base, dir);
ExploreStep(base, cw(dir));

else
// choose different order, see page 26 ff
Determine the types of the components using the layer numbers

of the surrounding cells;
if No component of type III exists then

Use the left-hand rule, but omit the first possible step.
else

Visit the component of type III at last.
end if

end if

ExploreStep(base, dir):

if unexplored(base, dir) then
Walk on shortest path using known cells to base;
move(dir);
ExploreCell(dir);

end if

24 Chapter 2 Exploring Cellular Environments

2.2.2 The Analysis of SmartDFS

SmartDFS explores the polygon in layers: Beginning with the cells along the
boundary, SmartDFS proceeds towards the interior of P . Let us number the
single layers:

Definition 2.4 Let P be a (simple) grid polygon. The boundary cells of
P uniquely define the first layer of P . The polygon P without its first layer
is called the 1-offset of P . The `th layer and the `-offset of P are defined
successively, see Figure 2.10.

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �

2` edges gained

π

cut off

cut off

`

`

2` edges lost

Figure 2.10: The 2-offset (shaded) of a grid polygon P .

Note that the `-offset of a polygon P is not necessarily connected. Al-
though the preceding definition is independent from any strategy, SmartDFS
can determine a cell’s layer when the cell is visited for the first time. We can
define the `-offset in the same way for a polygon with holes, but the layer of
a given cell can no longer be determined on the first visit in this case. The
`-offset has an important property:

Lemma 2.5 The `-offset of a simple grid polygon, P , has at least 8` edges
fewer than P .

Proof. First, we can cut off blind alleys that are narrower than 2`, because
those parts of P do not affect the `-offset. We walk clockwise around the
boundary cells of the remaining polygon, see Figure 2.10. For every left turn
the offset gains at most 2` edges and for every right turn the offset looses at
least 2` edges. O’Rourke [150] showed that #vertices = 2·#reflex vertices+4

2.2 Exploring Simple Polygons 25

s′

c

P2

K2

K1

c Q

Q
K1

c

K2
P

Q

(i) (ii)

s

P1

s

Figure 2.11: A decomposition of P at the split cell c and its handling in SmartDFS.

holds for orthogonal polygons, so there are four more right turns than left
turns. 2

Definition 2.4 allows us to specify the detection and handling of a split
cell in SmartDFS. We start with the handling of a split cell and defer split
cell detection.

Let us consider the situation shown in Figure 2.11(i) to explain the han-
dling of a split cell. SmartDFS has just met the first split cell, c, in the
fourth layer of P . P divides into three parts:

P = K1
•∪K2

•∪ { visited cells of P },

where K1 and K2 denote the connected components of the set of unvisited
cells. In this case it is reasonable to explore the component K2 first, because
the start cell s is closer to K1; that is, we can extend K1 with ` layers, such
that the resulting polygon contains the start cell s.

More generally, we want to divide our polygon P into two parts, P1

and P2, so that each of them is an extension of the two components. Both
polygons overlap in the area around the split cell c. At least one of these
polygons contains the start cell. If only one of the polygons contains s, we
want our strategy to explore this part at last, expecting that in this part
the path from the last visited cell back to s is the shorter than in the other

26 Chapter 2 Exploring Cellular Environments

part. Vice versa, if there is a polygon that does not contain s, we explore
the corresponding component first. In Figure 2.11, SmartDFS recursively
enters K2, returns to the split cell c, and explores the component K1 next.

In the preceding example, there is only one split cell in P , but in general
there will be a sequence of split cells, c1, . . . , ck. In this case, we apply the
handling of split cells in a recursive way; that is, if a split cell ci+1, 1 ≤ i < k,
is detected in one of the two components occurring at ci we proceed the same
way as described earlier. Only the role of the start cell is now played by
the preceding split cell ci. In the following, the term start cell always refers
to the start cell of the current component; that is, either to s or to the
previously detected split cell. Further, it may occur that three components
arise at a split cell, see Figure 2.14(i) on page 28. We handle this case as
two successive polygon splits occurring at the same split cell.

Layer 2

Layer 1

(ii)(i)

c

(II)

(III) (III)

(I)

c

Figure 2.12: Several types of components.

Visiting Order
We use the layer numbers to decide which component we have to visit at
last. Whenever a split cell occurs in layer `, every component is one of the
following types, see Figure 2.12:

I. Ki is completely surrounded by layer `5

II. Ki is not surrounded by layer `
III. Ki is partially surrounded by layer `

There are two cases, in which SmartDFS switches from a layer ` − 1 to
layer `. Either it reaches the first cell of layer `−1 in the current component
and thus passes the start cell—see, for example, the switch from layer 1 to
layer 2 in Figure 2.13—, or it hits another cell of layer `− 1 but no polygon
split occurs, such as the switch from layer 2 to layer 3 in in Figure 2.13.
In the second case, the considered start cell must be located in a narrow
passage that is completely explored; otherwise, the strategy would be able
to reach the first cell of layer ` − 1 as in the first case. In both cases the
part of P surrounding a component of type III contains the first cell of the

5More precisely, the part of layer ` that surrounds Ki is completely visited. For con-
venience, we use the slightly sloppy, but shorter form.

2.2 Exploring Simple Polygons 27

s

Layer 3
first cell in layer 2

first cell in layer 3 Layer 1

Layer 2

Figure 2.13: Switching the current layer.

current layer ` as well as the start cell. Therefore, it is reasonable to explore
the component of type III at last.

There are two cases, in which no component of type III exists when a
split cell is detected:

1. The part of the polygon that contains the preceding start cell is ex-
plored completely, see for example Figure 2.14(i). In this case the
order of the components makes no difference.6

2. Both components are completely surrounded by a layer, because the
polygon split and the switch from one layer to the next occurs within
the same cell, see Figure 2.14(ii). A step that follows the left-hand
rule will move towards the start cell, so we just omit this step. More
precisely, if the the robot can walk to the left, we prefer a step forward
to a step to the right. If the robot cannot walk to the left but straight
forward, we proceed with a step to the right.

We proceed with the rule in case 2 whenever there is no component of
type III, because the order in case 1 does not make a difference.

An Upper Bound on the Number of Steps
For the analysis of our strategy we consider two polygons, P1 and P2, as
follows. Let Q be the square of width 2q + 1 around c with

q :=

{
`, if K2 is of type I
` − 1, if K2 is of type II

,

6In Figure 2.14(i) we gain two steps, if we explore the part left to the splitcell at
last and do not return to the split cell after this part is completely explored, but return
immediately to the start cell. But decisions like this require facts of much more global
type than we consider up to now. However, for the analysis of our strategy and the upper
bound shortcuts like this do not matter.

28 Chapter 2 Exploring Cellular Environments

s

c

Layer 2

Layer 1

(ii)(i)

sc

Figure 2.14: No component of type III exists.

where K2 denotes the component that is explored first, and ` denotes the
layer in which the split cell was found. We choose P2 ⊂ P ∪ Q such that
K2 ∪ {c} is the q-offset of P2, and P1 := ((P\P2) ∪ Q) ∩ P , see Figure 2.11.
The intersection with P is necessary, because Q may exceed the boundary
of P . Note that at least P1 contains the preceding start cell. There is an
arbitrary number of polygons P2, such that K2 ∪ {c} is the q-offset of P2,
because blind alleys of P2 that are not wider than 2q do not affect the q-
offset. To ensure a unique choice of P1 and P2, we require that both P1 and
P2 are connected, and both P ∪Q = P1 ∪ P2 and P1 ∩ P2 ⊆ Q are satisfied.

The choice of P1, P2 and Q ensures that the robot’s path in P1\Q and
in P2\Q do not change compared to the path in P . The parts of the robot’s
path that lead from P1 to P2 and from P2 to P1 are fully contained in the
square Q. Just the parts inside Q are bended to connect the appropriate
paths inside P1 and P2, see Figure 2.11 and Figure 2.15.

In Figure 2.11, K1 is of type III and K2 is of type II. A component of
type I occurs, if we detect a split cell as shown in Figure 2.15. Note that Q
may exceed P , but P1 and P2 are still well-defined.

Remark that we do not guarantee that the path from the last visited cell
back to the corresponding start cell is the shortest possible path. See, for
example, Figure 2.16: A split cell is met in layer 2. Following the preceding
rule, SmartDFS enters K2 first, returns to c, explores K1, and returns to
s. A path that visits K1 first and moves from the upper cell in K2 to s is
slightly shorter. A case like this may occur if the first cell of the current
layer lies in Q. However, we guarantee that there is only one return path
in P1\Q and in P2\Q; that is, only one path leads from the last visited cell
back to the preceding start cell causing double visits of cells.

2.2 Exploring Simple Polygons 29

s

c

K2
Q

(ii)(i)

P

P1

s′

s

K1

K2

c

Q

K1

Q
P2

c

Figure 2.15: The component K2 is of type I. The square Q may exceed P .

We want to visit every cell in the polygon and to return to s. Every
strategy needs at least C(P) steps to fulfill this task, where C(P) denotes the
number of cells in P . Thus, we can split the overall length of the exploration
path, π, into two parts, C(P) and excess(P), with |π| = C(P) + excess(P).
C(P) is a lower bound on the number of steps that are needed for the
exploration task, whereas excess(P) is the number of additional cell visits.

Because SmartDFS recursively explores K2 ∪ {c}, we want to apply the
upper bound inductively to the component K2 ∪ {c}. If we explore P1 with
SmartDFS until c is met, the set of unvisited cells of P1 is equal to K1,
because the path outside Q do not change. Thus, we can apply our bound
inductively to P1, too. The following lemma gives us the relation between
the path lengths in P and the path lengths in the two components.

Lemma 2.6 Let P be a simple grid polygon. Let the robot visit the first
split cell, c, which splits the unvisited cells of P into two components K1

and K2, where K2 is of type I or II. With the preceding notations we have

excess(P) ≤ excess(P1) + excess(K2 ∪ {c}) + 1 .

Proof. The strategy SmartDFS has reached the split cell c and explores
K2 ∪ {c} with start cell c first. Because c is the first split cell, there is

30 Chapter 2 Exploring Cellular Environments

cK1

Q
K2

Layer 2

Layer 1

s

Figure 2.16: The order of components is not necessarily optimal.

no excess in P2\(K2 ∪ {c}) and it suffices to consider excess(K2 ∪ {c}) for
this part of the polygon. After K2 ∪ {c} is finished, the robot returns to
c and explores K1. For this part we take excess(P1) into account. Finally,
we add one single step, because the split cell c is visited twice: once, when
SmartDFS detects the split and once more after the exploration of K2 ∪{c}
is finished. Altogether, the given bound is achieved. 2

c is the first split cell in P , so K2 ∪ {c} is the q-offset of P2 and we can
apply Lemma 2.5 to bound the number of boundary edges of K2∪{c} by the
number of boundary edges of P2. The following lemma allows us to charge
the number of edges in P1 and P2 against the number of edges in P and Q.

Lemma 2.7 Let P be a simple grid polygon, and let P1, P2 and Q be defined
as earlier. The number of edges satisfy the equation

E(P1) + E(P2) = E(P) + E(Q) .

Proof. Obviously, two arbitrary polygons P1 and P2 always satisfy

E(P1) + E(P2) = E(P1 ∪ P2) + E(P1 ∩ P2) .

Let Q′ := P1 ∩ P2. Note that Q′ is not necessarily the same as Q, see,
for example, Figure 2.15. With P1 ∪ P2 = P ∪ Q we have

E(P1) + E(P2) = E(P1 ∩ P2) + E(P1 ∪ P2)

= E(Q′) + E(P ∪ Q)

= E(Q′) + E(P) + E(Q) − E(P ∩ Q)

= E(P) + E(Q)

The latter equation holds because Q′ = P ∩ Q. 2

2.2 Exploring Simple Polygons 31

Finally, we need an upper bound for the length of a path inside a grid
polygon.

Lemma 2.8 Let π be the shortest path between two cells in a grid polygon
P . The length of π is bounded by

|π| ≤ 1

2
E(P) − 2 .

Proof. W. l. o. g. we can assume that the start cell, s, and the target cell,
t, of π belong to the first layer of P , because we are searching for an upper
bound for the shortest path between two arbitrary cells.

Observe the path πL from s to t in the first layer that follows the bound-
ary of P clockwise and the path πR that follows the boundary counterclock-
wise. The number of edges along these paths is at least four greater than
the number of cells visited by πL and πR using an argument similar to the
proof of Lemma 2.5. Therefore we have:

|πL| + |πR| ≤ E(P) − 4.

In the worst case, both paths have the same length, so |π(s, t)| = |πL| =
|πR| holds. With this we have

2 · |π(s, t)| ≤ E(P) − 4 =⇒ |π(s, t)| ≤ 1

2
E(P) − 2.

2

Now, we are able to show our main theorem:

Theorem 2.9 Let P be a simple grid polygon with C cells and E edges. P
can be explored with

S ≤ C +
1

2
E − 3

steps. This bound is tight.

Proof. C is the number of cells and thus a lower bound on the number of
steps that are needed to explore the polygon P . We show by an induction
on the number of components that excess(P) ≤ 1

2E(P) − 3 holds.
For the induction base we consider a polygon without any split cell:

SmartDFS visits each cell and returns on the shortest path to the start cell.
Because there is no polygon split, all cells of P can be visited by a path of
length C − 1. By Lemma 2.8 the shortest path back to the start cell is not
longer than 1

2E − 2; thus, excess(P) ≤ 1
2E(P) − 3 holds.

Now, we assume that there is more than one component during the
application of SmartDFS. Let c be the first split cell detected in P . When
SmartDFS reaches c, two new components, K1 and K2, occur. We consider
the two polygons P1 and P2 defined as earlier, using the square Q around c.

32 Chapter 2 Exploring Cellular Environments

W. l. o. g. we assume that K2 is recursively explored first with c as start
cell. After K2 is completely explored, SmartDFS proceeds with the remain-
ing polygon. As shown in Lemma 2.6 we have

excess(P) ≤ excess(P1) + excess(K2 ∪ {c}) + 1 .

Now, we apply the induction hypothesis to P1 and K2 ∪ {c} and get

excess(P) ≤ 1

2
E(P1) − 3 +

1

2
E(K2 ∪ {c}) − 3 + 1 .

By applying Lemma 2.5 to the q-offset K2 ∪ {c} of P2 we achieve

excess(P) ≤ 1

2
E(P1) − 3 +

1

2
(E(P2) − 8q) − 3 + 1

=
1

2
(E(P1) + E(P2)) − 4q − 5 .

From Lemma 2.7 we conclude E(P1)+E(P2) ≤ E(P)+4(2q +1). Thus, we
get excess(P) ≤ 1

2E(P) − 3.
In Section 2.1 we have already seen that the bound is exactly achieved

in polygons that do not contain any 2 × 2-square of free cells. 2

Competitive Factor
So far we have shown an upper bound on the number of steps needed to
explore a polygon that depends on the number of cells and edges in the
polygon. Now, we want to analyze SmartDFS in the competitive framework.

Corridors of width 1 or 2 play a crucial role in the following, so we refer
to them as narrow passages. More precisely, a cell, c, belongs to a narrow
passage, if c can be removed without changing the layer number of any other
cell.

It is easy to see that narrow passages are explored optimally: In corridors
of width 1 both SmartDFS and the optimal strategy visit every cell twice,
and in the other case both strategies visit every cell exactly once.

We need two lemmata to show a competitive factor for SmartDFS. The
first one gives us a relation between the number of cells and the number of
edges for a special class of polygons.

Lemma 2.10 For a simple grid polygon, P , with C(P) cells and E(P)
edges, and without any narrow passage or split cells in the first layer, we
have

E(P) ≤ 2

3
C(P) + 6 .

Proof. Consider a simple polygon, P . We successively remove a row or
column of at least three boundary cells, maintaining our assumption that
the polygon has no narrow passages or split cells in the first layer. These

2.2 Exploring Simple Polygons 33

assumptions ensure that we can always find such a row or column. Thus,
we remove at least three cells and at most two edges. This decomposition
ends with a 3 × 3 block of cells that fulfills E = 2

3C + 6. Now, we reverse
our decomposition; that is, we successively add all rows and columns until
we end up with P . In every step, we add at least three cells and at most
two edges. Thus, E ≤ 2

3C + 6 is fulfilled in every step. 2

s

c′

π′

s′
P ′

Figure 2.17: For polygons without narrow passages or split cells in the first layer,
the last explored cell, c′, lies in the 1-offset, P ′ (shaded).

For the same class of polygons, we can show that SmartDFS behaves
slightly better than the bound in Theorem 2.9.

Lemma 2.11 A simple grid polygon, P , with C(P) cells and E(P) edges,
and without any narrow passage or split cells in the first layer can be explored
using no more steps than

S(P) ≤ C(P) +
1

2
E(P) − 5 .

Proof. In Theorem 2.9 we have seen that S(P) ≤ C(P)+ 1
2E(P)− 3 holds.

To show this theorem, we used Lemma 2.8 on page 31 as an upper bound
for the shortest path back from the last explored cell to the start cell. Lem-
ma 2.8 bounds the shortest path from a cell, c, in the first layer of P to the
cell c′ that maximizes the distance to c inside P ; thus, c′ is located in the
first layer of P , too.

Because P has neither narrow passages nor split cells in the first layer,
we can explore the first layer of P completely before we visit another layer,
see Figure 2.17. Therefore, the last explored cell, c′, of P is located in the
1-offset of P . Let P ′ denote the 1-offset of P , and s′ the first visited cell in
P ′. Remark that s and s′ are at least touching each other, so the length of a
shortest path from s′ to s is at most 2. Now, the shortest path, π, from c′ to
s in P is bounded by a shortest path, π′, from c′ to s′ in P ′ and a shortest
path from s′ to s:

|π| ≤ |π′| + 2 .

The path π′, in turn, is bounded using Lemma 2.8 by

|π′| ≤ E(P ′) − 2 .

34 Chapter 2 Exploring Cellular Environments

By Lemma 2.5 (page 24), E(P ′) ≤ E(P) − 4 holds, and altogether we get

|π| ≤ E(P) − 4 ,

which is two steps shorter than stated in Lemma 2.8. 2

Now, we can prove the following

Theorem 2.12 The strategy SmartDFS is 4
3-competitive.

Proof. Let P be a simple grid polygon. In the first stage, we remove
all narrow passages from P and get a sequence of (sub-)polygons Pi, i =
1, . . . , k, without narrow passages. For every Pi, i = 1, . . . , k−1, the optimal
strategy in P explores the part of P that corresponds to Pi up to the narrow
passage that connects Pi with Pi+1, enters Pi+1, and fully explores every Pj

with j ≥ i. Then it returns to Pi and continues with the exploration of Pi.
Further, we already know that narrow passages are explored optimally. This
allows us to consider every Pi separately without changing the competitive
factor of P .

Now, we observe a (sub-)polygon Pi. We show by induction on the
number of split cells in the first layer that S(Pi) ≤ 4

3C(Pi) − 2 holds. Note
that this is exactly achieved in polygons of size 3×m, m even, see Figure 2.18.

SmartDFS optimal strategy

s s

Figure 2.18: In a corridor of width 3 and even length, S(P) = 4

3
SOpt(P)−2 holds.

If Pi has no split cell in the first layer (induction base), we can apply
Lemma 2.11 and Lemma 2.10:

S(Pi) ≤ C(Pi) +
1

2
E(Pi) − 5

≤ C(Pi) +
1

2

(
2

3
C(Pi) + 6

)

− 5

=
4

3
C(Pi) − 2 .

Two cases occur if we meet a split cell, c, in the first layer, see Figure 2.19.
In the first case, the new component was never visited before (component
of type II, see page 26). Here, we define Q := {c}. The second case occurs,
because the robot meets a cell, c′, that is in the first layer and touches the
current cell, c, see for example Figure 2.19(ii) and (iii). Let Q be the smallest
rectangle that contains both c and c′.

2.2 Exploring Simple Polygons 35

(iii)(i) (ii)

P ′′

c

P ′

Q c

P ′

Q

P ′′

c′

P ′′

P ′

c c′

Figure 2.19: Three cases of split cells, (i) component of type II, (ii) and (iii) com-
ponent of type I.

Similar to the proof of Theorem 2.9, we split the polygon Pi into two
parts, both including Q. Let P ′′ denote the part that includes the component
of type II or III, P ′ the other part. For |Q| = 1, see Figure 2.19(i), we
conclude S(Pi) = S(P ′)+S(P ′′) and C(Pi) = C(P ′)+C(P ′′)−1. Applying
the induction hypothesis to P ′ and P ′′ yields

S(Pi) = S(P ′) + S(P ′′)

≤ 4

3
C(P ′) − 2 +

4

3
C(P ′′) − 2

=
4

3
C(Pi) +

4

3
− 4 <

4

3
C(Pi) − 2 .

For |Q| ∈ { 2, 4 } we gain some steps by merging the polygons. If we
consider P ′ and P ′′ separately, we count the steps from c′ to c—or vice
versa—in both polygons, but in Pi the path from c′ to c is replaced by the
exploration path in P ′′. Thus, we have S(Pi) = S(P ′) + S(P ′′) − |Q| and
C(Pi) = C(P ′) + C(P ′′) − |Q|. This yields

S(Pi) = S(P ′) + S(P ′′) − |Q|

≤ 4

3
C(P ′) − 2 +

4

3
C(P ′′) − 2 − |Q|

=
4

3
C(Pi) +

1

3
(|Q| − 6) − 2 <

4

3
C(Pi) − 2 .

The optimal strategy needs at least C steps, which, altogether, yields a
competitive factor of 4

3 . 2

36 Chapter 2 Exploring Cellular Environments

Split Cell Detection

Layer 1

Visited

(iii)(i)

no split cell

split cell

(ii)

s ?

c

c

c′
c

?

c′c

s

Figure 2.20: (i) Detecting a split cell, (ii) and (iii) a polygon split occurs in layer 1.

Finally, we describe the detection of a split cell. In the first instance, let
us assume that the robot already moves in a layer ` > 1. In Section 2.2.1
we defined that a split cell divides the graph of unexplored cells into two
parts when the split cell is visited. Because the polygon is simple, we can
determine a global split using a local criterion. We observe the eight cells
surrounding the current robot’s position. If there is more than one connected
set of visited cells in this block, the current robot position is obviously a split
cell, see Figure 2.20(i). Remark that we can execute this test although the
robot’s sensors do not allow us to access all eight cells around the current
position. We are interested only in visited cells, so we can use the robot’s
map of visited cells for our test in layers ` > 1. Unfortunately, this test
method fails in layer 1, because the robot does not know the “layer 0”, the
polygon walls. However, we want to visit the component that has no visited
cell in the current layer (type II) first; therefore, a step that follows the
left-hand rule is correct. The strategy behaves correctly, although we do
not report the splitcell explicitly. See, for example, Figure 2.20(ii) and (iii):
In both cases the polygon split cannot be detected in c, because the cell
marked with ’?’ is not known at this time. The split will be identified and
handled correctly in c′.

2.3 Exploring Polygons with Holes 37

2.3 Exploring Polygons with Holes

In an environment with obstacles (holes) it is not obvious how to detect
and to handle split cells. When a polygon split is detected, the robot may
be far away from the split cell, because it had no chance to recognize the
split before reaching its current position. For example, in Figure 2.21(i) the
robot has surrounded one single obstacle and c is a split cell, whereas in
(ii) there are two obstacles and c is no split cell. Both situations cannot be
distinguished until the cell c′ is reached. So we use a different strategy to
explore environments with obstacles.

c c

(i) (ii)

s s

c′ c′

Figure 2.21: In an environment with obstacles, the robot may detect a split on a
position far away from the splitcell, (i) c was a split cell, (ii) c was no split cell.

2.3.1 An Exploration Strategy

The basic idea of our strategy, CellExplore, is to reserve all cells right to the
covered path for the way back. As in SmartDFS we use the left-hand rule;
that is, the robot proceeds keeping the polygon’s boundary or the reserved
cells on its left side. CellExplore uses two modes. In the forward mode the
robot enters undiscovered parts of the polygon, and in the backward mode
the robot leaves known parts, see Algorithm 2.3 on page 39. We require
that the robot starts with its back to a wall.

38 Chapter 2 Exploring Cellular Environments

2 3 4 5 6 7 1098

A

B

C

D

E

F

H

I

J

1

G

Figure 2.22: Example of an exploration tour produced by CellExplore (Screenshot
using [77]; the white cells are holes, dark gray cells are reserved).

Figure 2.22 shows an example of an exploration tour. The robot starts in
J1 and explores the polygon in the forward mode until F8 is reached. There,
the robot switches to the backward mode and explores the reserved cells F7–
F5. The path from F5 to H5 is blocked by the hole in G5, so the robot walks
on the cells F4–H4 which have been visited already in the forward mode. In
H5 the robot discovers the unreserved and unexplored cell H6, switches back
to the forward mode and explores the cells H6–H8. Note that no cells can
be reserved in this case, because the cells I6–I8 have already been reserved
during the exploration of J8–J6. Therefore, the robot walks the same path
back to H5 and continues the return path in the backward mode. In the
forward mode, the robot could not reserve a cell from H3, so we move via
H4 to I4 and proceed with the return path in the backward mode. The cells
D9, C2 and G2 are blocked, so the robot has to circumvent these cells using
visited cells. In C5 another unreserved and unexplored cell is discovered, so
we switch to the forward mode and visit C4.

2.3 Exploring Polygons with Holes 39

Algorithm 2.3 CellExplore

Forward mode:

• The polygon is explored following the left-hand rule: For every
entered cell the robot tries to extend its path to an adjacent,
unexplored, and unreserved cell, preferring a step to the left7

over a straight step over a step to the right.

• All unexplored and unreserved cells right to the covered path are
reserved for the return path by pushing them onto a stack.8 If no
cell right to the robot’s current position can be reserved—because
there is a hole or the corresponding cell is already reserved or
explored—the robot’s position is pushed onto the stack for the
return path.

• Whenever no step in the forward mode is possible, the strategy
enters the backward mode.

Backward mode:

• The robot walks back along the reserved return path.

• Whenever an unexplored and unreserved cell appears adjacent to
the current position, the forward mode is entered again.

7A “step to the left” or “turn left” means that the robot turns 90◦ counterclockwise
and moves one cell forward. Analogously with “step to the right” or “turn right”.

8If the robot turns left, we reserve three cells: right hand, straight forward, and forward-
right to the robot’s position. Note that we store the markers only in the robot’s memory.
This allows us to reserve cells that only touch the current cell, even if we are not able to
determine whether these cells are free or blocked.

40 Chapter 2 Exploring Cellular Environments

2.3.2 The Analysis of CellExplore

We analyze CellExplore in three steps: First,
we analyze the single steps of the strategy with a
local view and with one assumption concerning
the robot’s initial position, see the figure on the

blocked

right. This results in a bound that depends on the number of left turns
that are needed to explore the polygon. Then we discard the assumption,
and finally we consider some global arguments to replace the number of left
turns with parameters of the polygon.

To analyze our strategy CellExplore we use the following observations:

• CellExplore introduces a dissection of all cells into cells that are ex-
plored in the forward mode, denoted by F , and cells that are explored

in the backward mode, B: C = F •∪ B.

• All cells that are explored in the forward mode can be uniquely clas-
sified by the way the robot leaves them: either it makes a step to the

left, a step forward or a step to the right. F = FL

•∪ FF

•∪ FR.

• CellExplore defines a mapping ϕ : B −→ F , which assigns to every
cell c ∈ B one cell d ∈ F , so that c was reserved while d was visited.

• There exists a subset D ⊆ B of the cells that have an unexplored and
unreserved neighbor and the strategy switches from backward mode
to forward mode. We call these cells division cells.

P0,2 P0,3P0,1P0,0

Figure 2.23: Decomposing a polygon. The shaded part shows the reserved cells.

We will analyze CellExplore by an induction over the cells in F . Starting
with the given polygon, P , and the given start cell, s, we can define a
sequence Pk,i of polygons (P0,0 := P) with start cells sk,i as follows: Pk,i+1

arises from Pk,i by removing the start cell sk,i and all cells that are reserved
in the first step in Pk,i (i. e., every cell c with ϕ(c) = sk,i). The start cell
sk,i+1 in the new polygon Pk,i+1 is the cell that the robot enters with its
first step in Pk,i, see Figure 2.23. The reserved cells in this and all following
figures are shown shaded; 4 denotes the start cell.

2.3 Exploring Polygons with Holes 41

∆S = +4
G = +2

Forward step
Polygon split

Forward step

∆S = +2
G = +1

∆C = +4

Forward step

∆E/2 = +2

∆S = 0
∆E/2 = 0

G = +2

∆C = +2
∆E/2 = +1
∆S = +2
G = +1

∆C = +1
∆E/2 = +1
∆S = +2
G = 0

Left TurnForward step

Forward step

∆C = +2

∆C = +2
∆E/2 = +1
∆S = +2
G = +1

∆C = +2
∆E/2 = +1

P0,1

P1,3

P1,4

P2,0

P1,2

P1,0 P1,1

P0,0

P1,5

Figure 2.24: Decomposing a polygon. 4 denotes the start cell and the initial
direction. ∆C, ∆E and ∆S denote the differences in the number of cells, edges,
and steps, respectively. G denotes the balance.

42 Chapter 2 Exploring Cellular Environments

There is nothing to consider when the strategy enters the backward
mode, because we remove all cells that are explored in the backward mode
together with the forward cells. But what happens, if a division cell occurs;
that is, the strategy switches from the backward mode to the forward mode?

Lemma 2.13 If one of the cells reserved in the first step in Pk,i is a division
cell, then Pk,i is split by removing sk,i and all cells that are reserved in
this step (i. e., all cells c with ϕ(c) = sk,i) into two or more not-connected
components.

Proof. Consider two components, P1 and P2, that are connected in P by
some cells X ⊂ B. Let cj be the first cell in X that is discovered on the
return path, thus, P2 is entered via cj . In our successive decomposition,
ϕ(cj) is the start cell of a polygon Pk,i. In Pk,i all cells explored before ϕ(cj)
are already removed. If there would be another connection, c`, between P1

and P2 at this time, c` would be discovered before cj on the return path and
P2 would have been entered via c` in contradiction to our assumption that
P2 is entered via cj . Thus, cj must be the last cell that connects P1 and P2.

2

If one or more of the cells to be removed are division cells, the polygon
Pk,i is divided into subpolygons Pk+1,0, Pk+2,0, . . . that are analyzed sepa-
rately, see Figure 2.25. See Figure 2.24 for a more comprehensive example
for the successive decomposition of a polygon.

Pk,i P1 = Pk+1,0

P2 = Pk+2,0

Figure 2.25: Handling of division cells.

Now, we are able give a first bound for the number of steps that CellExplore
uses to explore a polygon.

Lemma 2.14 Let us assume that the cell behind and right hand to the
robot’s position9 is blocked. The number of steps, S, used to explore a polygon
with C cells, E edges and H holes, is bounded by

S ≤ C +
1

2
E + H + 2L − 3,

9In other words, the cell southeast to the robot’s current position if the current direction
is north.

2.3 Exploring Polygons with Holes 43

where L denotes the number of the robot’s left turns.

Proof. We observe the differences in the number of steps, cells, edges and
holes between Pk,i and Pk,i+1, and assume by induction that our upper
bound for the length of the exploration tour holds for Pk,i+1 and for the
separated subpolygons Pk+j,0. Therefore, we have to show that the limit is
still not exceeded if we add the removed cells and merge the subpolygons.
We want to show that the following inequation is satisfied in every step:

S ≤ C +
1

2
E + H + 2L − 3.

Let G denote the “profit” made by CellExplore; that is, the difference
between the actual number of steps and the upper bound. With G, the
preceding inequation is equivalent to

C +
1

2
E + H + 2L − G − S − 3 = 0.

Pi,j Pi,j+1 Pi,j+2 Pi,j+3

Figure 2.26: Decomposing a step to the right into several forward steps.

We have to consider three main cases: the division cells, the cells con-
tained in FL (left turns), and those contained in FF ∪ FR (forward steps
and right turns). There is no need to consider right turns explicitly, be-
cause steps to the right can be handled as a sequence of forward steps,
see Figure 2.26. The successive decomposition ends with one single cell
(C = 1, E = 4,H = 0) for which S = 0 = C + 1

2E + H + 2L − 3 holds
(Induction base).

Division cells
If one of the cells that are reserved in the first step in Pk,i is a division
cell, Pk,i is split into two polygons Pk+1,0 (P1 for short) and Pk+2,0 (P2

for short), see Lemma 2.13. We assume by induction that our upper
bound is achieved in both polygons:

Ci +
1

2
Ei + Hi + 2Li − Gi − Si − 3 = 0, i ∈ {1, 2}.

44 Chapter 2 Exploring Cellular Environments

For the merge of P1 and P2 into one polygon P , we can state the
following:

S = S1 + S2 + ∆S

E = E1 + E2 + ∆E

C = C1 + C2

H = H1 + H2

L = L1 + L2

G = G1 + G2 + GS ,

where GS denotes the profit made by merging the polygons.

We want to show that our bound is achieved in P :

C +
1

2
E + H + 2L − G − S − 3

= C1 + C2 +
1

2
(E1 + E2 + ∆E) + H1 + H2 + 2L1

+ 2L2 − G1 − G2 − GS − S1 − S2 − ∆S − 3

= C1 +
1

2
E1 + H1 + 2L1 − G1 − S1 − 3

︸ ︷︷ ︸

=0

+ C2 +
1

2
E2 + H2 + 2L2 − G2 − S2 − 3

︸ ︷︷ ︸

=0

+
1

2
∆E − GS − ∆S + 3

= 0

⇐⇒ GS =
1

2
∆E − ∆S + 3

Thus, for every polygon split we have to observe ∆E and ∆S. If
GS is positive, we gain some steps by merging the polygons, if GS is
negative, the merge incurs some costs.

The different configurations for a polygon split can be assigned to
several classes, depending on the number of common edges between P1

and P2 and the way, the robot returns from P2 to P1—more precisely
the distance between the step from P1 to P2 and the step from P2

to P1, compare for example Figure 2.29(3a) and (3b). Figure 2.29(i)
and (ii) show some instances of one class. Because the actual values
for ∆E and ∆S depend on only these two parameters, we do not list
every possible polygon split in Figure 2.29, but some instances of every
class.

The balances of the polygon splits are shown in table 2.1. Two cases
have a negative balance, so we need one more argument to show that

2.3 Exploring Polygons with Holes 45

these cases do not incur any costs. Observe that after splitting Pk,i the
polygon P1 starts with a cell from FL in the cases (1b)–(5). Removing
this block of 4 cells, we gain +2, see the first line of Figure 2.31. This
covers the costs for the polygon split in the cases (4a) and (5a).

Forward steps
We have to consider several cases of forward steps, see Figure 2.30.
The table lists the differences in the number of steps (∆S), cells (∆C),
edges (∆E) and holes (∆H) if we add the considered cells to Pk,i+1.
The last column shows G = ∆C+ 1

2∆E+∆H−∆S. After removing the
observed block of cells, the remaining polygon must still be connected;
otherwise, we would have to consider a polygon split first. Thus, there
are some cases, in which ∆H must be greater than zero.

It turns out that all cases have a positive balance, except those that
violate the assumption in Lemma 2.14 that the cell behind and right
hand to the robot’s position is blocked, see the cases marked with (*)
in Figure 2.30. Notice that the configurations shown in Figure 2.27
are left turns instead of forward steps!

To show that we have analyzed all possible cell configurations for a step
forward, we use the following observations. When the robot makes a
step forward, we know the following: Both behind and left hand to
the robot are walls (otherwise it would have turned left), in front of
the robot is no wall (otherwise it could not make a step forward).
Right hand to the robot may or may not be a wall. In the latter
case, we have three edges of interest that may or may not be walls,
yielding 23 = 8 cases, which can be easily enumerated. Two special
cases occur by taking into consideration that the robot may enter the
observed block of cells from the upper cell or from the right cell, see
for example Figure 2.30(5a) and (5b).

Figure 2.27: Configurations that are steps to the left instead of forward steps.

Steps to the left
Possible cases of left turns are shown in the figures 2.31–2.34. As
in the previous case, the last column shows the balance. Again, we
observe that all cases with a negative balance of −3 are a violation

46 Chapter 2 Exploring Cellular Environments

of our assumption that the cell behind and right hand to the robot’s
position is blocked. The negative balances of −2 are compensated by
the addend 2L in our bound.

(i) Block is entered from left (ii) Block is entered from upper cell

∆S = 2∆S = 4

Figure 2.28: Another class of left turns.

When counting the number of steps, we assumed that the robot enters
the block of cells from the same direction as it left the block (from the
left as shown in the figures). The robot may enter the block from the
upper cell as shown in Figure 2.28, but this would only increase the
balance.

The completeness of the cases can be shown with the same argument
as in the previous case: We know that there is a wall behind the robot
and left hand to the robot is no wall. Examining a block of four cells
for a left turn, we have six edges that may or may not be walls, and we
have three cells that may or may not be holes, yielding corresponding
configurations of edges. 2

∆E ∆S GS

(1) -2 2 0
(2) -4 0 1
(3a) -6 0 0
(3b) -6 -2 2
(4a) -8 0 -1
(4b) -8 -2 1
(4c) -8 -4 3
(5a) -10 0 -2
(5b) -10 -2 0

Table 2.1: Balances of polygon splits

2.3 Exploring Polygons with Holes 47

etc.

(2)

(1b)

(3a) (3b)

(4a) (4b) (4c)

(5a) (5b)

(1a)

etc.

Figure 2.29: Some possible cases of polygon splits.

48 Chapter 2 Exploring Cellular Environments

0 +2 −1 0 +1 (*)

+2 +1 +1 0 0

+2 −1 +1 0+2

+2 +2 −1 0 −1

+10+2+4 −1

+1+10+2+2

0

+2

+2 +2

+2 0

0

+1 +1

0

S C∆∆ E/2∆ H G

(*)

+1+1+2+4 0

+2

+2 +2

+2 +1

+1 0

+1 +2

+1

+4 +2 +2 0 0

∆

+1+1+2+4 0

+200+20

(8)

(7)

(6)

(5b)

(5a)

(4)

(*)

(*)

(2)

(1)

(3)

(9b)

(*)

(9a)

Figure 2.30: Cell configurations for forward steps.

2.3 Exploring Polygons with Holes 49

∆S C∆∆ E/2∆ H G

+4 +4 +20+2

+4 0+1−1+4

+4 +4 +1+10

+4 +4 0+1 +1

+4 +4 +1+1 +2

+4 +4 000

+4 +4 +2+20

+4 −10−1+4

+4 +1+2−1+4

+4 +4 −20−2

+4 +4 −1+1−2

+4 +4 0+2−2

+4 +4 +1+3−2

+4 +4 −30−3

+4 +4 0+3−3

+4 +4 −2+1−3

+4 +4 −1+2−3

Figure 2.31: Possible configurations for steps to the left (1).

50 Chapter 2 Exploring Cellular Environments

∆S C∆∆ E/2∆ H G

+6 +4 −2+2−2

+6 +4 +10+3

+6 +4 +1+1+2

+6 +4 +1+2+1

+6 +4 0+1+1

+6 +1+30+4

+6 0+20+4

+6 −1+10+4

+6 +4 −2+1−1

+6 +4 −1+2−1

+6 +4 0+3−1

+6 +4 −3+1−2

+6 +4 −1+3−2

Figure 2.32: Possible configurations for steps to the left (2).

2.3 Exploring Polygons with Holes 51

∆S C∆∆ E/2∆ H G

+4 +3 +10+2

+6 00+3+3

+4 +3 0+1 0

+4 +3 +1+1 +1

+4 −100+3

+4 +1+20+3

+4 0+10+3

+6 0+1+2+3

+6 −1+1+1+3

+6 0+2+1+3

+6 −1+20+3

+6 0+30+3

+4 +3 +1+3−1

+4 +3 −20−1
+4 +3 −1+1−1

+4 +3 0+2−1

+6 −2+10+3

Figure 2.33: Possible configurations for steps to the left (3).

52 Chapter 2 Exploring Cellular Environments

C

+3 0+1+2

+6 +3 −1+1+1

+6 +3 −2+10

+6 +3 0+2+1

+6 +3 −1+20

+6 +3 0+30

+6 +3 −1+3−1

+6 +3 −2+2−1

+6 +3 −3+1−1

+2 +1 00+1

+4 +2 0+1+1

+4 +2 00+2

+4 +2 −1+10

+6 +3 00+3

these configurations

are forward steps!

∆S ∆∆ E/2∆ H G

+6

Figure 2.34: Possible configurations for steps to the left (4).

2.3 Exploring Polygons with Holes 53

Next, we want to discard the assumption we made in Lemma 2.14.

Lemma 2.15 The assumption that the cell behind and right hand to the
robot’s position is blocked can be violated only in the robot’s initial position;
that is, in P0,0 and not in any Pk,i with k + i > 0.

Proof.
Consider a robot located in some cell c with

no wall behind and right hand to its position, and
w. l. o. g. dir =’north’. If this is not the robot’s initial
position, but the position sk,i of a polygon Pk,i occur-

ring in the successive decomposition of the polygon,

c

c′ c′′

the robot must have entered the cell c from the cell c′ below c in the polygon
Pk,i−1. If the cell c′′ right to c′ is not a hole in Pk,i−1, c′′ would be a reserved

cell, and, thus, it would be removed together with c′ in the step from Pk,i−1

to Pk,i. Consequently, when the robot has reached c, there would be a hole

behind and right hand to its current position. 2

Lemma 2.16 The number of steps, S, used to explore a polygon with C
cells, E edges and H holes, is bounded by

S ≤ C +
1

2
E + H + 2L − 2,

where L denotes the number of the robot’s left turns.

Proof. Lemma 2.15 shows that the assumption in Lemma 2.14 can be
violated only in the robot’s initial position. On the other hand, we have
seen in the proof of Lemma 2.14 that all cases that violate the assumption
incur the costs of just one additional step. 2

(i) (ii)

Figure 2.35: Corridors of odd width.

Our bound still depends on the number of left turns the robot makes
while exploring the polygon. To give a bound that does not depend on
the strategy, we introduce another property of grid polygons, a measure

54 Chapter 2 Exploring Cellular Environments

to distinguish rather flat polygons from winded polygons; let us call it the
sinuosity of P . Our motivation for introducing this property is the following
observation: The robot may walk n+1 times through a corridor of width n,
n odd, see Figure 2.35(i). The costs for this extra walk are covered by the
corridor walls; more precisely, for every double visit we charge two polygon
edges and get the addend 1

2E in the upper bound. If there is a left turn in
the corridor, there are not enough boundary edges for balancing the extra
walk. Figure 2.35(ii) shows a corridor of width 3 with a left turn. The steps
shown with dashed lines cannot be assigned to edges, so we have to count the
edges shown with dashed lines to balance the number of steps. We define
two types of sinuosities, the clockwise and the counterclockwise sinuosity.
Because CellExplore follows the left-hand rule, our strategy depends on the
clockwise sinuosity. A similar strategy that follows the right-hand rule would
depend on the counterclockwise sinuosity.

Qi

(ii)(i)

pipi+1 pipi+1

Qi

Figure 2.36: Contributions to Wcw by (i) the outer boundary, (ii) inner boundaries.

Q4

Q2

p4

p2

p3

p1

Q3

Q1

Figure 2.37: Reflex vertices pi and the corresponding squares Qi. Wcw = q′1 + q′3 =
8, Wccw = q′4 = 2.

2.3 Exploring Polygons with Holes 55

Definition 2.17 Let the clockwise sinuosity, Wcw, and the counterclock-
wise sinuosity, Wccw, of a grid polygon P be defined as follows: We trace
the boundary of P—the outer boundary clockwise, the boundaries of the
holes inside P counterclockwise—, and consider every pair, pi and pi+1, of
consecutive reflex vertices, see Figure 2.36.

We trace the angular bisector between the two edges incident to pi inside
P until it hits the boundary of P . The resulting line segment defines the
diagonal of a square, Qi, see Figure 2.37.10 Let qi be the width of Qi,
analogously with qi+1.

Because the robot needs some further steps only in odd corridors, we
count only odd squares:

q′i :=

{
qi − 1, if qi is odd
0, if qi is even

.

The need for additional edges may not only be caused by reflex vertices, but
also by the start cell, see Figure 2.38(ii). Thus, we consider the squares Qscw

and Qsccw from the start cell in clockwise and counterclockwise direction,
respectively. Let q′scw and q′sccw be defined analogously to q′i. Now, we define
the clockwise sinuosity Wcw and the counterclockwise sinuosity Wccw as

Wcw := q′sccw +
∑

i≥1

q′2i−1, and Wccw := q′scw +
∑

i≥1

q′2i.

Figure 2.38 shows two examples for the definition of Wcw. Note that in
(i) only one reflex vertex contributes to Wcw, and every edge we count here
is needed.

(ii)(i)

Qsccw

q′sccw = 2

Figure 2.38: Examples for the definition of Wcw: (i) A polygon with C = 193, E
2

=
78, H = 3, Wcw = 6, S = 284 (the bound for S is exactly achieved), (ii) the start
cell contributes to Wcw, too (C = 46, E

2
= 23, H = 2, Wcw = 2, S = 74).

10We can construct Qi by “blowing up” a square around the cell in P that touches the
boundary of P in pi until the corner of Qi opposite to pi hits the polygon’s boundary.

56 Chapter 2 Exploring Cellular Environments

With the definition of Wcw, we can give our final result:

Theorem 2.18 Let P be a grid polygon with C cells, E edges, H holes,
and clockwise sinuosity Wcw. CellExplore explores P using no more than

S ≤ C +
1

2
E + Wcw + 3H − 2

steps. This bound is tight.

(i) (ii)

G = −2 G = −2G = +2G = +2

Figure 2.39: Left turn followed by (i) a right turn and (ii) a reduction.

Proof. We need some global arguments to charge the costs for a left turn
to properties of P . So let us examine, which configurations may follow a left
turn (after some forward steps):

• A right turn follows the left turn, see Figure 2.39(i). We gain +2 steps
per right turn, so the possible costs of −2 for this left turn are covered.

• An obstacle follows the left turn. We can charge the obstacle with
the costs for the left turn and get a factor of 3 for the number of
obstacles. Every obstacle is charged at most once, because when the
successive decomposition reaches the obstacle for the first time, the
obstacle disappears; that is, the hole merges with the outer boundary.

• A reduction follows the left turn, see Figure 2.39(ii). Later in this
section, we show that a reduction covers the costs of a left turn.

• Another left turn follows the observed left turn. In this case, there is
no other property of P to be charged with this costs but the sinuosity
Wcw, this follows directly from the definition of Wcw.

In the case of a reduction following a left turn we observe the number, d,
of forward steps between the left turn and the reduction, as well as the cell
marked with b, and—if d ≥ 1—the cell marked with a in Figure 2.40(i). If b
is blocked, b is either part of an obstacle inside the polygon or it is outside
the polygon. In the first case, we charge the obstacle with the costs of the
left turn as described earlier. In the second case we have a polygon split that

2.3 Exploring Polygons with Holes 57

ba

d
(i) (ii) (iii)

a

Figure 2.40: (i) A reduction follows a left turn, (ii) the left turn causes a polygon
split, (iii) no forward steps between the left turn and the reduction (d = 0).

leaves us with a left turn that incurs no costs, see Figure 2.40(ii) and the
first line of Figure 2.31. The same holds for the cell marked with a if there
is at least one forward step between the left turn and the reduction (i. e.,
d ≥ 1). Therefore, we assume that a and b are free cells in the following.

If the reduction follows immediately after the left turn (d = 0), see Fig-
ure 2.40(iii), we have one of the left turns shown in Figure 2.32, Figure 2.34
or the lower half of Figure 2.33. In any of these cases we have either a
positive balance or we meet an obstacle (∆H > 0) and charge the costs for
the left turn to the obstacle as earlier.

(ii)(i)

G = +2 G > −2

Figure 2.41: If a and b are free cells we gain 2. (i) d = 1, (ii) d ≥ 1.

If there is one forward step between the left turn and the reduction
(d = 1), the robot enters the 2×2 block of cells of the left turn not from the
same side as it left it, because a and b are polygon cells. In Figure 2.41(i)
the robot leaves the block to the left but enters it from above. This situation
is described in Figure 2.28 on page 46 and reduces the costs for the left turn
by 2, so the balance is either zero or positive. If there is more than one
forward step (d > 1), we have either the same situation as in the preceding
case, or the reduction from a corridor of width ≥ 3 to a corridor of width
≤ 2 shifts to the left, see Figure 2.41(ii), and eventually we reach a forward
step as shown in Figure 2.30(5b) that gains +2 and covers the costs for the
left turn.

Altogether, we are able to charge the costs for every left turn to other
properties, which proves our bound.

Figure 2.38 and Figure 2.42 show nontrivial examples (i. e., H 6= 0 and
Wcw 6= 0) for polygons in which the bound is exactly achieved. 2

58 Chapter 2 Exploring Cellular Environments

Figure 2.42: Polygon with C = 34, E
2

= 17, H = 1, Wcw = 2, S = 54 = C + 1

2
E +

3H + Wcw − 2.

2.4 Concluding Remarks

In this section, we consider some further aspects concerning cellular envi-
ronments. We briefly discuss other strategies for the exploration of grid
polygons with holes and strategies in three-dimensional environments, and
present a simulation environment for exploration strategies. Finally, we in-
troduce another model for robots in grid polygons.

2.4.1 CellExplore with Optimized Return Path

Figure 2.43: A polygon with C = 69, E
2

= 52, H = 1, Wcw = 2, S = 124 =
C + 1

2
E + 3H + Wcw − 2. The return path in this polygon cannot be shortened.

A straightforward improvement to the strategy CellExplore is to use
in the backward mode the shortest path—on the cells known so far—to
the first cell on the stack that is unexplored or has unexplored neighbors
instead of walking back using every reserved cell, see the first improvement of
DFS. From a practical point of view, this improvement is very reasonable,
because the performance of the strategy increases in most environments.
Unfortunately, the return path (i. e., the path walked in the backward mode)
is no longer determined by a local configuration of cells. Instead, we need a
global view, which complicates the analysis of this strategy. However, there

2.4 Concluding Remarks 59

are polygons that force this strategy to walk exactly the same return path as
CellExplore without any optimization, see Figure 2.43, so this idea does not
improve the worst case performance, and the upper bound for the number
of steps is the same as in Theorem 2.18.

2.4.2 The Solution of Gabriely and Rimon

2D

Path of the tool

Spanning tree edge

(i)

current free

father

free45free90

f45

c f0

f90

(ii)

D

W
R

Figure 2.44: (i) The model of Gabriely and Rimon: the robot R, the tool W , cells,
and 2D-cells, (ii) avoiding turns in Scan-STC.

Parallel to our work, Gabriely and Rimon [63] introduced another so-
lution for the exploration of grid polygons with holes. They use a slightly
different model: A robot is equipped with a tool of size D × D that rotates
around the robot. Four cells in a 2 × 2 block are combined to a so-called
2D-cell, see Figure 2.44(i). With this, the robot moves from midpoint to
midpoint of a 2D-cell, constructing a spanning tree on the graph of all 2D-
cells, while the tool moves keeping the spanning tree edges on its right side.
If cells on one side of the spanning tree edge are blocked, the tool changes to
the other side of the spanning tree until the original side becomes unblocked.
The strategy Spiral-STC (Spanning Tree Covering) uses the right-hand rule
for the construction of spanning tree edges; the strategy Scan-STC tries
avoid horizontal edges and thus to reduce the number of turns. Whenever
the Spiral-STC strategy is about to add a horizontal spanning tree edge
from the current 2D-cell to the 2D-cell free, the Scan-STC strategy checks
the cells labeled f45 and f90 in Figure 2.44(ii). If both cells are free, the cell
f0 can be reached with a vertical step from f45, and the robot continues its
path with a step from current to free90 avoiding the horizontal step from
current to free. Remark that this technique can also be applied to CellEx-
plore. However, the scanning strategies require an extension of the robot’s
abilities, because it is necessary to check the cell f45, which is not adjacent
to the current cell.

Gabriely and Rimon showed an upper bound of C + B steps for their
strategies, where C denotes the number of cells and B the number of bound-

60 Chapter 2 Exploring Cellular Environments

ary cells (i. e., the number of free cells that touch an obstacle cell). In poly-
gons without any 2× 2 block of free cells, C + B is equal to our bound from
Theorem 2.18, but in polygons with wider areas our bound is considerably
smaller than C + B. In the worst case, Gabriely and Rimon charge roughly
all edges,11 whereas our bound uses only slightly more than half the number
of edges.

2.4.3 Exploring Three-Dimensional Environments

Modifying our strategies to explore three-dimensional cellular environments
is an interesting problem. A cell in three dimensions is a cube; each of
them having six neighboring cells and 26 touching cells. With this, a robot
located in the cell (x, y, z) can move to six directions. We call a move to the
positive X (Y,Z) direction a move to the east (north, up; respectively) and
in negative direction a move west (south, down; respectively).

(ii)(i)

Figure 2.45: Cubical environments, (i) C = 2, F = 10, E = 16, (ii) C = 17, F =
46, E = 39.

Analogously to the number of cells and edges in a grid polygon, we have
in the three-dimensional case the number, C, of cubic cells and the number,
F , of faces between a free and a blocked cell. Additionally, we have the
number of outer edges, E, that is the total number of all edges, where a free
cell meets three blocked cells.

Obviously, the lower bounds from Theorem 2.2 and Theorem 2.3, see
Section 2.1, still hold in the three-dimensional case. We can use the same
construction, replacing every square by a cube.

Corollary 2.19 The competitive complexity of exploring an unknown cu-
bical environment with obstacles is equal to 2, and every strategy needs at
least 7

6C steps in a simple polyhedron12 with C cells.

11By Lemma 2.5 only four edges in the outer boundary are not charged. However,
there a cases in which even B > E holds, because a hole with E′ edges has—by the same
lemma—E′ + 4 boundary cells.

12Following [188], we call a grid polyhedron simple, if it is topologically equivalent to a
sphere.

2.4 Concluding Remarks 61

Algorithm 2.4 SmartDFS-3D

ExploreCell(dir):

base := current position;
if not isSplitCell(base) then

if (dir == ’up’) or (dir == ’down’) then
// Reset direction to explore next slice
dir := ’north’
ExploreStep(base, ’south’);

end if
// Left-Hand Rule:
ExploreStep(base, ccw(dir));
ExploreStep(base, dir);
ExploreStep(base, cw(dir));
ExploreStep(base, ’up’);
ExploreStep(base, ’down’);

else
Same as above, but in different order.

end if

A three-dimensional version of DFS, see Algorithm 2.1 on page 21, is
rather straightforward; we simply have to consider the two additional neigh-
bors. Note that it is not obvious how to state the left-hand rule in three
dimensions. A solution is, to view a grid polyhedron as a stack of slices
parallel to the XY plane and to proceed in every slice using the left-hand
rule. If no step following the left-hand rule is possible, we move up or down;
thus, we continue with the next upper or lower slice. The two improvements
to DFS—optimizing the return path as well as the detection and handling
of split cells—can be applied also in three dimensions. This leads to a strat-
egy SmartDFS-3D similar to Algorithm 2.2 on page 23 for the exploration
of simple cellular polyhedra. Algorithm 2.4 shows the corresponding proce-
dure ExploreStep; Figure 2.4613 shows an example. After a step upward or
downward we set the direction to north, because we want to explore the next
slice. Besides, ccw and cw are not defined for the directions up and down.
Note that we explicitly explore the cell to the south in this case, otherwise
this cell may not be visited, see Figure 2.47(i). Remark also that we can no
longer determine the layer number of a cell in its first visit, so the imple-
mentation of the split cell detection and handling is not as straightforward
as in two-dimensional case.

13For convenience, we show only the projection of the cells into their XY plane—similar
to a floor plan—and omit the height of the cells. Therefore, the top and the sides of the
shown cells are missing.

62 Chapter 2 Exploring Cellular Environments

s

Y
Z

X

Figure 2.46: Exploring a cubical environment with SmartDFS. Split cells are high-
lighted.

s

n

w e

c

s

c

s

c′ c′′

(ii)(i) (iii)
X

Y
Z

Figure 2.47: (i) Without an explicit step to the south, a robot using SmartDFS-3D
starting in s does not explore the cell c, (ii) a CellExplore-like strategy in 3D has to
ensure that c is visited (the shaded cells are reserved cells), (iii) a CellExplore-like
strategy in 3D may perform as badly as DFS.

We conject that the upper bound for the length of a shortest path inside a
grid polyhedron, compare to Lemma 2.8 on page 31, is roughly 1

4E, because
we can split a shortest path into parts parallel to the X, Y and Z axis. Every
step is—so to speak—embedded by four edges along the corresponding axis.
Thus, we conservatively conject that the upper bound for the number of
steps of SmartDFS-3D is roughly C + 1

4E.

The slice-wise left-hand rule can also be used to generalize CellExplore,
see Algorithm 2.3 on page 39. Now, we have ensure that all cells above
or below cells that are visited in the forward mode are explored. See, for
example, Figure 2.47(ii): The robot uses the standard CellExplore to explore
the lower plane, but misses the cell c. An idea to solve this problem is to
use two additional markers for every cell. The marker up is set for cells that
are visited in the forward mode, but have an unexplored neighbor above—
analogously for a down marker. For example, in Figure 2.47(ii) the up marker

2.4 Concluding Remarks 63

for c′ is set during the first visit of c′. For every visited cell, we reset the up
marker for the cell below. In the backward mode, we check if the up marker
for a cell adjacent to the current cell still is set. In this case, we walk to the
yet unvisited cell and switch to the forward mode to start an exploration
from this cell. After this, we continue with our path in the backward mode.
In our example, the up marker in c′ is still set when we reach c′′, therefore
we walk via c′ to c. c has no unexplored neighbor, so we return immediately
to c′′. Dienelt [45] successfully implemented this idea and gave a detailed
description of the strategy.

Another solution is to push not only the reserved cells onto the stack,
but also every cell that is explored in the forward mode, and to optimize
the path in the backward mode as described in Section 2.4.1. This solves
also the problem that the first idea is rather inefficient, if it is not possible
to reserve cells in the same slice, but in the slice above or below. Con-
sider an environment that is only one slice parallel to the Y Z plane, see
Figure 2.47(iii): The first strategy behaves exactly like DFS, whereas the
second strategy is able to shorten the return path (dashed line). However,
from our experience with two dimensions we conject that this strategy is
rather difficult to analyze. Even for the first strategy it not easy to estimate
the number of steps. In the analysis of CellExplore we have seen several
cases, in which we had to charge a hole inside the polygon, but we had to
do this at most once for every hole. In the three-dimensional case, a single
hole can appear in many slices parallel to the XY plane, and we may have
to charge the hole for every such slice. Thus, it not clear whether we can
adapt the proof technique for CellExplore at all.

2.4.4 A Simulation Environment

Handel et al. [77] developed a simulation software for exploration strategies
in grid polygons, including both SmartDFS and CellExplore, see Figure 2.48.
The Java applet consists mainly of two parts. First, the polygon editor
allows to create and to modify arbitrary polygons, or to generate polygons
randomly, so the user is not restricted to a few pre-coded examples, but
can try out any desired polygon. After switching from the editor to the
polygon explorer, the user can explore the polygon manually, observe the
behavior and performance of several strategies, and even compete against
the lower bounds that we have shown in Theorem 2.2 and Theorem 2.3, see
the adversary selector in Figure 2.48

It was a great help to have a tool that takes on the annoying and error-
prone task of counting cells and edges, and, more important, allows to
experiment with several versions of CellExplore, see the options panel in
Figure 2.48. For example, we studied a strategy where the cells right to
the path in the forward mode are reserved and used for the return path,
even if they are already reserved by another cell in the forward mode, see

64 Chapter 2 Exploring Cellular Environments

Figure 2.48: The GridRobot applet and the option panel for CellExplore.

2.4 Concluding Remarks 65

s

(ii)

s

(i)

Figure 2.49: (i) CellExplore vs. (ii) the version use reserved cells always.

s

Figure 2.50: The version use reserved cells always exceeds the bound from Theo-
rem 2.18 by one step. C = 34, E

2
= 19, H = 2, Wcw = 0, S = 58.

Figure 2.49. With some experiments, we found a polygon that exceeded
our upper bound, and therefore we rejected this version, see Figure 2.50.
Moreover, the tool helped to state and falsify some conjectures about the
strategy’s performance. For example, we tried to show a conjectured upper
bound of C + 1

2E +3H −3 for some time, but eventually found a counterex-
ample to this conjecture. Some more tries led to the understanding that it
is necessary to take the additional edges in Definition 2.17 (sinuosity) into
account. Of course, even the best simulator is no replacement for reasonable
proofs, it just gives some valuable insights.

Recently, Dienelt [45] developed a simulation environment for explo-
ration strategies in three-dimensional grids that may help developing further
strategies in three dimensions and finding an upper bound for them.

A simulation environment does not only serve for research purposes. It
also helps others to understand the strategies. We taught the exploration of
(grid-)polygons in lectures about robot motion planning [101, 102]; the Java
applet allowed our students to watch the strategies in different polygons
and to try out the lower bounds. The feedback was throughly positive: The
students, who used the applet, reported that it helped to understand the
subject. The same holds for other Java applets that show other algorithms or
structures in robot motion planning or—more generally—in computational
geometry, see the Geometry-Lab website [66] or Icking et al. [91].

Having a simulation environment is one benefit, writing it is another.
To write the program, the designer of an algorithm has to concretize every
line of pseudocode and every vaguely formulated idea. This gives a much
deeper insight into the problem. Examples for this are the detection of split
cells in SmartDFS, or the development of the lower bound for simple grid
polygons.

66 Chapter 2 Exploring Cellular Environments

Java seems to be a good choice for the implementation of a simulation
software. The language fulfills all requirements to a modern programming
language like object orientation and strong typing. Java comes with a com-
prehensive library of methods, data structures, and interfaces to a graphical
oriented window system. Moreover, Java is platform independent, so Java
applets can be downloaded and run in the user’s internet browser, requir-
ing only the installation of a Java plugin that is bundled with almost every
currently available internet browser under every reasonable computer and
operating system. This allows to make Java applets available to almost
every user without having to compile or even to install the program.

Recently, with Macromedia Flash [139] appeared an interesting alterna-
tive to Java. Flash offers the same platform independency as Java, Flash
programs—called movies in the Flash community—require only the Flash
player from Macromedia, which is available for free and for a wide range of
computer platforms. Although the JavaScript-based programming language
is a little bit sloppier than Java, it is remarkably powerful. Especially, it
is easy to create keyframe animations with Flash. A drawback is that the
authoring tool for Flash movies is not free of charge in contrast to the Java
Development Kit from Sun Microsystems [176].

2.4.5 Robots with Restricted Orientation

Another interesting model for robots moving around in cellular environments
was inspired by the board game Ricochet Robots by Alex Randolph [156].
The game consists of four robots in different colors, several marker chips, and
a game board showing some obstacles and some cells marked with different
symbols. Initially, the robots are placed randomly on the board and the
markers are hidden. In every turn one of the markers is drawn. The players
try to figure out the smallest number of moves that are necessary to move
the robot in the revealed color to the cell with the revealed symbol. The
interesting part of the game are the rules to move a robot: A robot can
move in one of the four directions (north, east, south, or west), but once it
has chosen a direction it continues to move in this direction until it hits an
obstacle or another robot. Thus, it is often necessary to move robots that
serve as guides to stop the movement of another robot on an appropriate
cell. See, for example, Figure 2.51(i): The task is to move the robot ⊗ to
the cell marked with 3. To permit this movement, the robot ⊕ has to move
to a, so three moves are necessary to solve the task. Of course, the player
that finds the minimal number of movements wins the turn.

This model can be used for a set of robots. Each of them has a very
restricted orientation. Even if the robots have a map of their environment, a
robot that touches a wall knows only roughly, which wall in the environment
it touches, but as soon as the robot leaves the wall it has no chance to
locate itself. Therefore, it continues its movement until it hits another wall

2.4 Concluding Remarks 67

3

b⊗

3

(i)

⊕

s

a

k

(ii)

a

Figure 2.51: (i) Example: the robot ⊕ has to move to a to allow the robot ⊗ a
movement to 3, (ii) dk

2
e + 1 robots are necessary to reach 3.

or another robot. However, the robots are able to communicate with each
other, or all of them are controlled by the same computer. Let us assume,
all robots start on the same start cell, s.14 Apart from the best strategy to
solve Randolph’s game, an interesting question is, whether there is an upper
bound for the number of robots, such that every cell can be reached by at
least one robot. If there are passages of width 1 in the environment, we
can “trap” robots. See, for example, Figure 2.51(ii): The polygon includes
a corridor of width 1, and we need dk

2e + 1 robots starting in s before 3 is

reached—one robot in a and dk
2e robots to “fill” the corridor from the left

or from the right. Note that we need one robot located in the cell b before
another robot is able to reach a, but the robot in b can be used again after
a is occupied.

Even if we have a simple polygon, corridors of width 1 may cause the
need for an arbitrary number of robots, see Figure 2.52(i): We need also
dk

2e + 1 robots starting in s to occupy t. But what happens, if the polygon
does not have such narrow passages? Are there still polygons that need an
arbitrary number of robots, or is there an upper bound? Engels [52] showed
the following theorem for general grid polygons:

Theorem 2.20 (Engels, 2005)
Given a grid polygon and a set of k Randolph robots, the problem of deciding
whether one the robots is able to reach a specified target cell is NP-complete.

For simple polygons (i. e., polygons without holes), only the following
simple statement is known:

Lemma 2.21 Given a rectangle of size m × n, m,n > 1, without holes,
every cell can be reached using at most three Randolph robots with O(m+n)
moves.

14We imagine the robots enter the polygon successively through a door in the wall or
in the floor.

68 Chapter 2 Exploring Cellular Environments

(0, 0)

c1 c2

t

a1 a2 bai s′

(ii)

a3

c4 c3b1

b2

b3

m

ns

t

(i)

k

a

X
Y

s

Figure 2.52: (i) dk
2
e + 1 robots are needed to reach t, (ii) t can be reached with

O(n + m) steps using 3 robots.

Proof. Consider an arbitrary start cell, s, and an arbitrary target, t =
(x, y), see Figure 2.52(ii). W. l. o. g. we assume that x ≤ dm

2 e and y ≥ dn
2 e

holds; otherwise, we choose another cell than c1 in the following.
We reach t using the following strategy. In the first stage, we place one

robot to mark the column containing t: The first robot moves from s via
s′ to c1 with 2 moves, the second robot moves from s to a1. Now, the first
robot moves via c4, c3 and c2 to a2, the second robot moves a similar path
to a3. This continues, until eventually one of the two robots has reached the
cell ai. With the help of the robot in ai we can proceed vertically to t: The
other robot moves via c3, c2 and b to b1. Now, we need a third robot that
moves via s′ and b to b2, and the robot located on b1 is now free to move to
b3. We proceed in this way until we reach t. It is easy to see that we use no
more than 4dm

2 e moves to occupy the cells ai and b, and no more than 4dn
2 e

further moves to reach t, yielding O(n + m) moves. 2

2.4 Concluding Remarks 69

2.4.6 Summary

In this chapter, we considered the exploration of grid polygons. For sim-
ple polygons we have shown a lower bound of 7

6 and presented a strategy,
SmartDFS, that explores simple polygons with C cells and E edges using
no more than C + 1

2E − 3 steps from cell to cell. Using this upper bound,
we were able to show that SmartDFS is in fact 4

3 -competitive, leaving a gap
of only 1

6 between the upper and the lower bound.
On the other hand, the competitive complexity for the exploration of grid

polygons with holes is 2. A simple DFS exploration already achieves this
competitive factor, but, nevertheless, DFS is not the best possible strategy,
because is it not necessary to visit each cell twice. Therefore, we developed
the strategy CellExplore that takes advantage of wider areas in the polygon,
and thus corrects the weakness in the DFS strategy.

Finally, we briefly discussed the exploration of three-dimensional envi-
ronments, but we left the performance of SmartDFS-3D and CellExplore-3D
as open questions. More further work might be done with the robot model
introduced in the previous section, and in the exploration of environments
that are composed of cells in a form other than a square (i. e., a triangle or
a hexagon).

70 Chapter 2 Exploring Cellular Environments

Chapter 3

Searching with Error-Prone

Robots

In the field of robot motion planning many aspects are studied and solved
by researchers from different communities. From a theoretical point of view,
many tasks are well understood; in the introduction we already mentioned,
for instance, the polygon exploration strategies [42, 84], and several kinds
of search strategies [64, 11, 113, 93, 164].

Theoretical correctness results and performance guarantees often suffer
from idealistic assumptions; for example, the assumption that the robot is
point shaped or error free. Because of these assumptions, given performance
bounds may not be achieved in “real” environments, or—in the worst case—
a correct implementation of the given algorithms is impossible.

On the other hand, practitioners analyze correctness and performance
mainly statistically or empirically, see, for example, [12, 13, 119, 120, 127,
186, 189]. Often, the performance is given only in terms of the running time
in milliseconds for several examples, and expressive statements concerning
asymptotic running time or competitive factors are missing.

Thus, there seems to be a kind of gap between the practically and the
theoretically oriented schools—unfortunately. To close this gap it may be
useful to investigate how theoretically well-analyzed algorithms with ide-
alistic assumptions behave if those assumptions cannot be fulfilled. More
precisely, can we design appropriate models for errors in sensors and motion,
and can we incorporate these error models into the theoretical analysis?

In this chapter we consider two examples of theoretically well-understood
strategies: the Pledge algorithm for escaping a maze, and the doubling
strategy for finding a point on a line. We examine sources of errors for this
strategies. Further, we show how errors may be modeled and analyze the
strategies with respect to possible errors.

For other approaches to robust strategies and error handling see, for
example, [130, 144, 145, 146, 47, 138, 7, 40, 174, 175, 126, 28, 190, 35, 21, 22].

72 Chapter 3 Searching with Error-Prone Robots

3.1 Leaving an Unknown Maze

As a first approach, we consider a rather simple and theoretically well-
understood strategy: the Pledge algorithm, see Abelson and diSessa [1],
and Hemmerling [79]. Given an unknown polygonal scene—the maze—the
robot has to leave the maze using nothing else than a touch sensor, the
ability to measure its turning angles, and a very limited amount of memory.

The Pledge algorithm assumes that the robot is able to move a straight
line between the obstacles and to count its turning angles correctly. Gritz-
mann [70] remarked that it would be interesting to know how the Pledge
algorithm behaves, if those assumptions cannot be fulfilled. Of course, if
the robot can make arbitrary big mistakes, there are always environments
in which the robot is hopelessly trapped. But what if the robot’s errors are
small enough? Are there upper bounds for measuring errors? We investigate
which conditions must hold to ensure that a robot can leave an unknown
maze with a Pledge-like algorithm.

An application of this problem is a robot that has to leave an unknown
maze using mainly a compass device. The compass readings may be faulty
due to disturbing magnetic fields or electrical deviations. We show that we
can solve this problem using the Pledge algorithm and give an upper bound
for the error in the compass readings, see Section 3.1.3.1.

We assume that the robot is not aware of making any errors; it always
believes that its movement and angle counting is correct.

3.1.1 The Pledge Algorithm

Algorithm 3.1 Pledge
ω := 0.
repeat

repeat
Move in direction ω in the free space.

until Robot hits an obstacle.
repeat

Follow the wall in counter-clockwise direction.
Count the overall turning angle in ω.

until Angle Counter ω = 0.
until Robot is outside the maze.

We have given a maze with polygonal obstacles in the plane, and a robot
that is able to recognize and follow a wall in a specified direction (w. l. o. g.
counter-clockwise) and to count the turning angles. The realization of these
abilities depends on the hardware of a specific robot. For example, the
turning angles may be counted by odometry, by measuring angles along the

3.1 Leaving an Unknown Maze 73

walls with sensors, or using a compass device. Other abilities for orientation
and navigation are not required; especially, it is not necessary that the robot
can build a map of its environment or set landmarks.

The task of leaving an unknown maze can be solved using the well-known
Pledge algorithm, see Algorithm 3.1,1 which performs only two types of
movements: Either the robot follows the wall of an obstacle counting its
turning angles, or the robot moves in a fixed direction through the free
space between the obstacles. The latter task always starts at vertices of the
obstacles when the angle counter reaches a predefined value. We assume
that the robot receives—somehow or other—a signal of success as soon as
it leaves the maze.

−π
2

p2

s

ω = −2π

p1 +π
4

+π
4

p4

p3

p = (px, py, 0)

Figure 3.1: The path of the Pledge algorithm.

In the idealized setting the robot is error-free, and it was shown by
Abelson and diSessa [1], and Hemmerling [79] that in this case a robot
using the Pledge algorithm escapes from a polygonal maze, provided that
there is such a solution. An example of the robot’s path using an error-free
Pledge algorithm is given in Figure 3.1. The angle-counting technique is
illustrated for the second obstacle: After the robot hits the obstacle in p2

it turns −π
2 to follow the wall. In p3 the robot turns +π

4 to follow the next
wall. Finally, in p4 it turns +π

4 again until the angle counter reaches zero
and the robot leaves the obstacle. Observe that the robot does not leave the
first obstacle in p1, because its angle counter is −2π instead of zero.

1For an implementation of the Pledge algorithm with error-prone angle counting see
[78].

74 Chapter 3 Searching with Error-Prone Robots

Even if the robot is equipped with
a compass device, the Pledge algorithm
deals only with relative turning angles and
does not use the compass’ ability to give
an absolute direction. However, this is no
weak point of the Pledge algorithm, be-
cause any strategy has to track the num-

� �� �

s

ber of full turns, anyway: A strategy that deals only with absolute directions
and decides, for example, to leave an obstacle as soon as the compass points
to north (i. e., ω mod 2π = 0 holds) can be trapped as shown in the figure.
Therefore, a robot equipped with a compass device does not extend the
robot model that is assumed for the Pledge algorithm.

3.1.2 Sufficient Conditions

Let us assume that it is possible to leave the given maze. Our basic idea
is to define a class, K, of curves in the robot’s workspace. The curves in K
represent possible paths that lead to an exit, even if the robot’s sensors and
motions are erroneous. We do not guarantee that K contains every possible
path to an exit, but every curve in K leads to an exit.

The current location of the robot is given by a
position and a heading. Thus, a curve C ∈ K is a
subspace of the workspace C = IR × IR × IR, and a
point on C is described as C(t) = (P (t), ϕ(t)), where
P (t) = (X(t), Y (t)) denotes the position at time t and
ϕ(t) the heading. Note that ϕ(t) is the sum of all turns
the curve has made so far. For example, after the curve
has made two full counterclockwise turns the heading
ϕ(t) is equal to 4π instead of zero.

R

= 4π

= 0
ϕ(t1)

ϕ(t2)

t1

t2

To classify the possible positions in the workspace, we divide the space
of positions, P = IR × IR, into three subspaces: First, the space of forbidden
configurations, Cforb—the union of the interior of all obstacles. Second, the
space of half-free configurations, Csemi, that is the union of the boundaries
of the obstacles, and finally the free configurations, Cfree, where P (t) /∈ Pi

for all obstacles Pi holds.2

If a curve hits a point P (hi) in Csemi after a movement through Cfree, we
call hi a hit point. If the curve leaves Csemi and enters the free space at P (`i),
we call `i a leave point. With respect to the Pledge algorithm we assume
that every leave point belongs to a vertex of an obstacle.

2To cut short, we use terms like “t ∈ Cfree” instead of “t with P (t) ∈ Cfree”.

3.1 Leaving an Unknown Maze 75

To escape from an unknown maze, the robot’s
strategy is not required to move a path that exactly
matches a curve in K, rather it is sufficient that the
robot’s path orients mainly on a curve in K. For
example, the robot may follow a wall in a certain
distance, because it is not point shaped, see the fig-
ure, or it may follow a wall in a zig-zag manner.
Therefore, we can describe the parts of a curve that

π
C ∈ K

R

Pi

correspond to a movement along a wall as line segments on the boundaries
of obstacles.

The Pledge algorithms uses two types of move-
ments: moving along a straight line in the free space,
and moving along an obstacle counting the turning
angles. Both types of movements may be error prone.
Either the turning angles are not measured exactly
and the robot leaves the obstacle earlier or later than

`i

expected, or the robot cannot follow its initial direction during the movement
in the free space.

Thus, we can distinguish between two sources of errors in the Pledge
algorithm. Each of them leads to a condition, and both conditions together
ensure the correctness of an error-prone Pledge algorithm. In the following
we establish a set of sufficient conditions for escaping from the maze. To
ensure that the robot can escape following a curve C ∈ K we want to avoid
infinite cycles in the curve.

s

Figure 3.2: Small errors along each boundary can sum up to a cycle.

To establish the set of conditions, we first observe that already small
counting errors along the boundary of obstacles or deviations in the free
space can sum up to a big mistake and lead to an infinite cycle. Figure 3.2
shows an example; the dashed lines show the correct leaving direction with
respect to the direction in the hit point. Between the obstacles the robot
drifts a little bit away from the correct direction and ends up in an infinite

76 Chapter 3 Searching with Error-Prone Robots

loop. This would happen even if the curve would not be allowed to make
a full 2π turn in the free space. Obviously, cycles would be inhibited, if
the curve between two obstacles would stay in a wedge around the initial
direction. In fact, this wedge can be as large as a half space! This leads to
the condition that for any two points in the free space, the difference in the
headings should be lower than π. We refer to this as the free space condition.

s

hi

0

hi

q

(i) (ii)

s

tk

`k−1

0

p
−π

2

− 3
2
π

tk

+π

+π + ε

hk
0

−π
2

−π

+π
2

0

0
p

0

−π
2
− ε

hk

q

Figure 3.3: Missing a leave point can lead to a cycle.

Unfortunately, the free space condition is not sufficient. Figure 3.3 shows
two examples, where C has a cycle, although the free space condition is
fulfilled. In both cases, the curve starts in s, meets an obstacle in hi, misses
the first possible leave point, p, and leaves the obstacle at another vertex, q.
The curve in Figure 3.3(i) hits the same obstacle again in hk. In Figure 3.3(ii)
the curve hits another obstacle, leaves this one in `k−1, and hits the first
obstacle again in hk. In both cases, P (hk) is visited two times, at hk and tk.
In the first case, the heading in tk is slightly larger than π, in the second case
+π

2 . Observe that the curve in Figure 3.3(ii) represents a second mistake:
The heading in the hit point hk is not zero, as it should be according to
the Pledge algorithm. This may occur if the preceding obstacle was left too
early or the path between the obstacles is not a straight line segment, or
this may be a combination of both reasons. However, the heading in hk is
−π

2 − ε and both mistakes sum up to an error that is slightly larger than π,
too.

Note that the problem is not related to a second visit of a single point; the
curve of the error-free Pledge algorithm may have many self hits. Instead,
the reason is that the heading in tk is—so to speak—overwinded with respect
to the heading in the hit point.

These observations lead to the conjecture that ϕ(tk)−ϕ(hk) < π should
hold whenever the curve hits an obstacle at hk and there exists a point tk
with P (hk) = P (tk). We refer to this as the obstacle condition. In the
following, we show that both conditions together are sufficient.

3.1 Leaving an Unknown Maze 77

Definition 3.1 Let K be the class of curves in C ⊆ Cfree∪Csemi that satisfy
the following conditions:

(i) The curve C circles an obstacle in a counter-clockwise direction.
(ii) Every leave point belongs to a vertex of an obstacle. Furthermore, for

every hit point there is a corresponding leave point, unless the searcher
is trapped in a courtyard (see page 79).

(iii) ∀t1, t2 ∈ C : P (t1), P (t2) ∈ Cfree ⇒ |ϕ(t1) − ϕ(t2)| < π
(free space condition)

(iv) ∀hi, t ∈ C : P (t) = P (hi) ⇒ ϕ(t) − ϕ(hi) < π (obstacle condition).

Obviously, the curve of the error-free Pledge algorithm is a curve in K.
The curves in K have two important properties that we show in the following
two lemmata.

(i)

P (t1) = P (t2)
P (t1) = P (t2)

(ii)

Figure 3.4: The difference between (i) a crossing and (ii) a touch at t2.

Lemma 3.2 A curve C ∈ K cannot cross itself.

Note that a curve of K can touch itself, see Figure 3.4.

hi

ti
hi

(i)

P (t1) = P (t2)

ϕ(hi) := 0

γ

hk

(ii)

P (t1) = P (t2)

hk

Figure 3.5: (i) A counterclockwise turn and a crossing, (ii) no crossing.

Proof. Let us assume, C crosses itself. Consider the first crossing of C;
that is, there are two parameters, t1 and t2, with t1 < t2 and P (t1) = P (t2),
so that a crossing occurs in P (t2) and no crossing exists before t2. The
curve C makes either a counterclockwise or a clockwise loop between t1 and

78 Chapter 3 Searching with Error-Prone Robots

t2. If a crossing happens in the free space, the curve violates the free space
condition; thus, we assume that the crossing occurs in Csemi.

Let us consider the case of a counterclockwise loop, see Figure 3.5(i). The
curve hits an obstacle at hi, makes a counterclockwise turn, meets P (hi) at
ti again, and has a crossing at t2 > ti > hi. Note that there is no crossing,
if the point P (hi) is not met between t1 and t2, see Figure 3.5(ii).

W. l. o. g. we assume ϕ(hi) = 0. The loop may leave the obstacle or
not; however, we reach ti with the heading ϕ(ti) + (−γ) = 2π. At P (hi)
the robot turns clockwise with angle γ to follow the obstacle boundary, so
−π < γ < 0 must hold. Hence, ϕ(ti) is greater than π and the obstacle
condition is violated.

(ii)(i)

hi

hk

γ

P (t1) = P (t2)

t1

t2

hk

tk

hi

P (t1) = P (t2)

γ

Figure 3.6: (i) A clockwise turn and a crossing, (ii) no crossing.

Now we look at a clockwise turn. The curve hits an obstacle at hi, follows
the obstacle and leaves the obstacle. Eventually, it returns to the obstacle
at another hit point hk > hi and has a crossing at t2, see Figure 3.6(i). The
point P (hk) has to be met before at tk between hi and t1. Otherwise, the
curve only touches itself and there is no crossing at t2, see Figure 3.6(ii).

Let ϕ(h+
k) denote the heading immediately after the robot has turned in

hk; that is, ϕ(h+
k) = ϕ(hk) + γ. Again, we have −π < γ < 0. On the other

hand, the curve has made a full clockwise turn between tk and h+
k ; thus,

ϕ(h+
k) = ϕ(tk) − 2π. Finally, the obstacle condition has to be fulfilled, too:

ϕ(tk) − ϕ(hk) < π

⇔ ϕ(h+
k) + 2π − ϕ(hk) = ϕ(hk) + γ + 2π − ϕ(hk) < π

⇔ γ < −π �

It follows that the first crossing cannot exist, and—by induction—the
curve cannot cross itself. 2

Lemma 3.3 A curve C ∈ K hits every edge in the environment at most
once.

3.1 Leaving an Unknown Maze 79

(i)

hi
hk

γi γk

`

e
hi

γiγk

hk

`

(ii)

e

Figure 3.7: A curve that hits an edge twice.

Proof. Let us assume, the curve C hits an edge e more than once: After a
first hit at hi the robot moves around and hits e again at hk, see Figure 3.7.
In P (hi) and P (hk) the robot turns clockwise to follow the edge e, therefore
−π < γi, γk < 0 holds. Let ϕ(h+

i) and ϕ(h+
k) be defined as in the proof of

Lemma 3.2. W. l. o. g. we assume ϕ(h+
i) = 0. Because the curve in h+

i and
h+

k follows the same edge e, the headings ϕ(h+
i) and ϕ(h+

k) must be mod 2π
the same; thus, ϕ(h+

k) = 2jπ, j ∈ ZZ. For j 6= 0 follows with ϕ(hi) = −γi

and ϕ(hk) = ϕ(h+
k) − γk that |ϕ(hk) − ϕ(hi)| = |2jπ − γk + γi| > π holds;

thus, the free space condition is violated.
Therefore, we can assume j = 0 and ϕ(h+

k) = 0. Consider the part of C
between the first and the second visit of P (hk) (in a situation as shown in
Figure 3.7(i)), or the curve between the consecutive visits of P (hi) as shown
in Figure 3.7(ii). If this loop, `, has no crossings, then ` is a Jordan curve
and C makes a ±2π turn in `. Thus, ϕ(h+

k) is equal to ±2π, in contradiction
to our assumption. Hence, the curve between the two visits of e must have
at least one crossing. But this contradicts to Lemma 3.2. 2

Finally, with Lemma 3.2 and Lemma 3.3 we are able to show that the
conditions from Definition 3.1 are sufficient to solve our problem.

Theorem 3.4 A robot whose path follows a curve C ∈ K escapes from an
unknown maze, if this is possible at all.

Proof.
By Lemma 3.3, a curve that meets the con-

ditions from Definition 3.1 hits every edge in
the environment at most once. When every
edge is visited, the robot either escapes from
the next leave point, because it cannot hit any
further edge, or it is not able to leave the cur-

� �� �
s

rently visited obstacle at all. But by Definition 3.1(ii) every obstacle will
be left, unless the searcher is trapped in a courtyard, see the figure. Thus,
if the robot never leaves the currently visited obstacle, it is not possible to
escape from the maze. 2

80 Chapter 3 Searching with Error-Prone Robots

3.1.3 Applications

In this section we consider the practical relevance of Theorem 3.4. What
consequences does it have for the design of a robot that should be able to
leave an unknown maze?

3.1.3.1 Leaving a Maze Using an Error-Prone Compass

Now, let us return to the compass-equipped robot. Theorem 3.4 can be
easily applied to determine the maximal error in the compass readings.

Corollary 3.5 A robot equipped with a compass device finds the exit from
an unknown maze using a simple Pledge-like strategy, if the error in the
compass readings is smaller than π

2 ; provided that it is possible to leave the
maze.

Proof. If the compass has a measuring error less than π
2 , it is easy to ensure

that the heading of the robot in the free space remains in the interval]−π
2 , π

2 [.
Thus, the free space condition is satisfied. Additionally, at every detected
hit point hi we have ϕ(hi) ∈]− π

2 , π
2 [.

Further, it is easy to detect +2π or −2π turns along the walls within
a deviation of]− π

2 , π
2 [due to the compass inaccuracy. Therefore, we can

assume that the deviation between the measured turning angle on a path
along the walls and the actual turning angle is less than π

2 , so ϕ(t) < π
2

is always satisfied while the robot follows a wall. Altogether, the obstacle
condition is fulfilled. 2

3.1.3.2 Exact Free Motion

Let us assume that the robot is able to move along a straight path between
obstacles correctly, or the deviations on a straight path are neglectable;
that is, the robot always hits the same edge as an error-free robot using the
Pledge algorithm. Only the angle counter of the robot is inaccurate in some
way. Let βi denote the difference between the real angle (the nominal value)
and the measured angle at the ith turn, and n the number of vertices in the
environment.

Lemma 3.6 If the robot is able to move along a straight path in the free

space and ensures that
∣
∣
∣
∑̀

i=k

βi

∣
∣
∣ < π holds for all k ≤ ` ≤ m, where m denotes

the number of turns the robot has made so far, then it is able to escape from
an unknown maze using the Pledge algorithm.

Proof. The new condition states that the absolute value of the accumulated
measuring error—the difference between the robot’s heading and its angle

3.1 Leaving an Unknown Maze 81

counter—never exceeds π. Now, we have to show that our new condition
does not violate the conditions from Definition 3.1.

First, let us assume that the free space condition is not met, so there
must be two points t1, t2 in the free space where |ϕ(t1) − ϕ(t2)| ≥ π holds.
W. l. o. g. we assume ϕ(t1) = 0. Because the robot correctly moves along a
straight line in the free space, the headings at the leave point, the following
hit point, and all points between them must be the same. Thus, there must
be a leave point `k with |ϕ(`k)| = |ϕ(t2)| ≥ π. But the robot leaves an
obstacle only, if its angle counter has reached zero, so the absolute value of
the accumulated measuring error in `k is at least π.

Second, we assume that the obstacle condition is violated. Then there
must be an obstacle Pi with a hit point hk and another point tk with P (tk) =
P (hk), such that ϕ(tk) − ϕ(hk) > π holds. W.l.o.g., let ϕ(hk) = 0, then
ϕ(tk) ≥ π holds, but the angle counter cannot be greater than zero, because
the robot leaves the obstacle as soon as the counter becomes zero. Thus,
the difference between the robot’s heading and its angle counter must be at
least π. 2

If the conditions from Definition 3.1 are satisfied and the robot escapes,
the robot visits every vertex at least once between two consecutive hit points.
Thus, with Lemma 3.3 the robots visits at most n2 vertices. Now, let the
robot’s maximal error be βmax := max βi. With Lemma 3.6 we have:

Corollary 3.7 A robot that guarantees |βmax| < π
n2 is able to escape from

an unknown maze with the Pledge algorithm; provided that it is possible to
leave the maze.

3.1.3.3 (Pseudo-) Orthogonal Scenes

In this section, we observe the Pledge algorithm in a special case of scenes—
orthogonal scenes—, but allow them to be inaccurate. A scene is called
orthogonal, if every polygon in the scene is orthogonal; that is, the polygon
edges meet with internal angles of either π

2 or 3
2π [150].3

W. l. o. g. we assume that the polygon edges are axis parallel. For or-
thogonal polygons we call a vertex convex, if its inner angle is equal to π

2 ,
and reflex, if its inner angle is 3

2π.
It is easy to see that we can simplify the Pledge algorithm in orthogonal

scenes. Because we have only two types of vertices, it is sufficient to keep
track of the number of convex and reflex vertices that the robot passes
by. Thus, the angle counting amounts to count +1 for a reflex vertex and
−1 for a convex vertex. Additionally, we count +1 for the hit point, see
Figure 3.8(i).

Now, we assume that the environment is more or less orthogonal; we
allow small deviations from the strict axis parallelism. To quantify these

3Polygons with this property are called also rectilinear.

82 Chapter 3 Searching with Error-Prone Robots

−

+

−

−

− −
(i) (ii)

e1

e2

δ(e1)

δ(e2)

0

0

+

++

+

Figure 3.8: (i) Angle counting for an orthogonal polygon, (ii) pseudo-orthogonal
polygon and divergence δ.

deviations, we use the angle of edges in a tilted position. More precisely,
we define the divergence, δ(e), of an edge e = (v,w) as the smallest angle
between e and an axis-parallel line through v or w, see Figure 3.8(ii).

Definition 3.8 A simple polygon, P , is called pseudo orthogonal, if

#convex vertices of P = #reflex vertices of P + 4

holds.4 We call a pseudo-orthogonal polygon, P , δ-pseudo orthogonal, if P
satisfies

δ(P) := max
e∈P

δ(e) ≤ δ .

A set of polygons, P, is called (δ-)pseudo-orthogonal scene, if every Pi ∈ P
is (δ-)pseudo orthogonal.

The robot’s angle counter may be a second source of errors. We assume
that the robot is able to measure angles with an accuracy of ρ; that is,
the difference between the nominal value and the measured value is smaller
than ρ. Now, we are interested in upper bounds for δ and ρ that guarantee
a successful application of the simplified Pledge algorithm to a δ-pseudo-
orthogonal scene.

First, we have to guarantee that the robot is able to distinguish convex
and reflex vertices correctly. Taking the worst case into account, we assume
that both edges adjacent to the current vertex deviate with the maximal
angle δ and the robot’s measuring error is maximal, too, see Figure 3.9. To
ensure a correct classification, we require that the measured outer angle, γ,
is greater than π for a convex vertex, and smaller than π for a reflex vertex.

4A convex (reflex) vertex of a simple polygon is a vertex with an inner angle smaller
(greater) than π.

3.1 Leaving an Unknown Maze 83

convex vertex reflex vertex

e1

e2 δ

δ
ρ

e1

e1

γ

δ

δ

ρ

γ

Figure 3.9: Maximal deviation between the outer measured angle (γ) and the outer
nominal value (dashed) for a convex and a reflex vertex.

Thus, we have to ensure

3

2
π − 2δ − ρ > π and

π

2
+ 2δ + ρ < π

⇔ 2δ + ρ <
π

2
⇔ 2δ + ρ <

π

2
.

On the other hand, the robot should be able to maintain its initial di-
rection, ω, in the free space, see Algorithm 3.1. To establish bounds for the
maximal deviation from the initial direction, we consider the headings in the
hit points. In the error-free case, the robot hits only horizontal edges, but
in a δ-pseudo-orthogonal scene the robot has to determine whether an edge
is classified as horizontal or as vertical. If the robot hits a horizontal edge, it
has to surround an obstacle using the simplified angle-counting procedure,
whereas a vertical edge can be ignored; that is, the robot just slides along
this edge.

hihi hi

ϕ

e

e

ρ

δ

0

γ

γ

0
ϕ

δ

ρ

−π
2

ϕ = 0

γ = −π
2

(i) (ii) (iii)

e

Figure 3.10: The robot hits a horizontal edge (i) error-free case, (ii) small absolute
value for γ, (iii) large absolute value for γ.

As in the preceding case, let γ denote the measured angle that the robot
turns in a hit point to follow a wall. Considering the divergence in the
edges, it is reasonable that the robot assumes an edge to be horizontal, if
−1

4π > γ > −3
4π holds, and vertical otherwise. Figure 3.10(ii) and (iii)

84 Chapter 3 Searching with Error-Prone Robots

show the worst cases for γ. The robot hits an edge e in hi with the heading
ϕ = ϕ(hi). In (ii) the deviations ϕ, δ and ρ make the absolute value of γ as
small as possible, in (iii) as large as possible. To ensure that γ ∈]− 1

4π,−3
4π [

holds, we have to restrict the heading, ϕ, in the hit point.
From Figure 3.10(ii) we get

γ = −π

2
− ϕ + δ + ρ < −π

4
⇔ −π

4
+ δ + ρ < ϕ ,

and Figure 3.10(iii) yields

γ = −
(π

2
+ ϕ + δ + ρ

)

> −3

4
π ⇔ π

4
− δ − ρ > ϕ .

Thus, the robot detects a horizontal edge correctly, if ϕ(hi) ∈] − π
4 + δ +

ρ, π
4 − δ − ρ [holds, and thus we require δ + ρ < π

4 , which includes the
preceding condition 2δ + ρ < π

2 .
In an orthogonal scene, the robot can rely on the vertical edges to adjust

its initial direction. In our case, the robot leaves an obstacle moving along
a vertical edge, too, but this means that the heading in a leave point is in
the range [−δ,+δ]. Considering the range for the heading in the (next) hit
point, we conclude that the deviation in the free space with respect to the
heading in the leave point has to be smaller than π

4 − 2δ − ρ. Altogether,
we have

Corollary 3.9 Let an unknown δ-pseudo-orthogonal scene be given, and
let us assume that it is possible to escape from this maze. If the robot is able
to measure angles within an accuracy of ρ with δ + ρ < π

4 , and—in the free
space—its deviation from the heading in the preceding leave point is smaller
than π

4 − 2δ − ρ, the robot is able to escape using the Pledge algorithm with
the simplified angle counting.

3.2 Finding a Door 85

3.2 Finding a Door

As the second application of error-prone robot models we consider the prob-
lem of finding a door along a wall with a blind robot, which does not know
the location of the door—neither the distance nor the direction towards
the door. This problem was considered by Gal [64, 65, 6] and independently
reconsidered by Baeza-Yates et al. [11]. Both works led to the doubling strat-
egy, which is a basic paradigm for search algorithms; for example, searching
for a point in a polygon, see Klein [115] and Schuierer [161], or approximat-
ing the optimal search path, see Chapter 4.

Searching on the line was generalized to searching on m rays emanat-
ing from a single source, see [64, 11]—this is also known as the lost cow
problem. Many other variants were discussed since then, for example m-ray
searching with restricted goal distance (Hipke et al. [82], Langetepe [122],
López-Ortiz and Schuierer [162, 131]), m-ray searching with additional turn
costs (Demaine et al. [41]), parallel m-ray searching (Kao et al. [108], Ham-
mar et al. [76], López-Ortiz and Schuierer [133]) or randomized searching
(Schuierer [163], Kao et al. [109]).

We investigate the impact of an error in the movement to the correctness
and the competitive factor of a strategy. In the first setting, the error range,
denoted by a parameter δ, is not known to the strategy. The strategy acts
as in the error free case. Afterward, we consider the case that the strategy
is aware of the error range and takes the error into account.

3.2.1 The Doubling Strategy

The task is to find a door in a wall, or rather a point, t, on a line. The
robot does not know whether t is located left hand or right hand to its
start position, s, nor does it know the distance from s to t. We assume
that the distance to the door is at least 1; thus, the additive constant in the
definition of the competitive factor—see Definition 1.1—can be omitted, see,
for example, Langetepe [122].

We can describe a strategy to solve this problem using a sequence F =
(fi)i∈IN. fi denotes the search depth, that is the distance that the robot
walks in the ith step. If i is even, the robot moves fi units from the start to
the right and fi units back to the left; if i is odd, the robot moves to the left
and back to the right. Gal and Baeza-Yates et al. showed that the strategy
fi = 2i is 9-competitive, assuming that the movement is correct; that is,
after moving fi units from the start point to the right and moving fi units
to the left—and vice versa—the robot has reached its start point. Further,
they showed that no other strategy can achieve a competitive factor smaller
than 9.

86 Chapter 3 Searching with Error-Prone Robots

3.2.2 Modeling the Error

The robot moves straight line segments of a certain length from the start
point alternately to the left and to the right. Every movement can be
erroneous, which causes the robot to move more or less far than expected.
However, we require the robots error per unit to be within a certain error
bound, δ. More precisely, let f denote the length of a movement required
by the strategy—the nominal value—and let ` denote the actually covered
distance, then we require that ` ∈ [(1−δ)f, (1+δ)f] holds for δ ∈ [0, 1 [; that
is, the robot moves at least (1−δ)f and at most (1+δ)f . This is a reasonable
error model, because the actually covered distance is in a symmetrical range
around the nominal value. Another commonly used method is to require
` ∈ [1

1+δ′
f, (1 + δ′)f] for δ′ > 0. This leads to an unsymmetrical range

around the nominal value, but does not restrict the upper bound for the
error range. Because both error models may be of practical interest, we give
results for both models.

3.2.3 Disregarding the Error

In this section, we assume that the robot is not aware of making any errors.
In this case, the optimal doubling strategy presented in Section 3.2.1 seems
to be the best choice for the robot. Now, the question is whether the robot
is still able to reach the door, or rather, whether there is an upper bound for
the error, δ, that still guarantees a success. Further, we want to analyze the
worst-case efficiency for a doubling strategy with respect to δ. We are also
interested in the number of additional iteration steps that an error-prone
robot needs compared to the error-free case.

W. l. o. g. we consider the case that the door is located right hand to the
start point, s. The other case is handled analogously.

d

s

s′

`−1
`+

1

`+

2

`−2
`−3...

`+

2j−1

∆i

Figure 3.11: The ith iteration consists of two separate movements, `+

i and `−i .
Both may be of different length, causing a drift. The vertical path segments are to
highlight the single iterations, the robot moves only on horizontal segments.

3.2 Finding a Door 87

The errors in the movements away from the door and back towards the
door may be different, so the robot may not return to the start point, s,
between two iterations, see Figure 3.11. Even worse, the start point of every
iteration may drift continuously away from the original start point. Let `+

i

be the length of the movement to the right in the ith step and `−i be the
covered distance to the left. Now, the deviation from the start point after
the kth iteration step, the drift ∆k, is

∆k =
k∑

i=1

(`−i − `+
i).

If the drift is greater than zero, the start point sk+1 of the iteration k + 1
is located left to the original start point, if it is smaller than zero, sk+1 is
right hand to s. Note that `+

i is equal to `−i in the error-free case.
The length of the path πk after k iterations is

|πk| =
k∑

i=1

(`−i + `+
i).

3.2.3.1 Reachability

The first question is, which condition must hold to guarantee that the robot
reaches the door. Further, we are interested in the number of additional
iteration steps that the error-prone robot needs compared to the error-free
robot, depending on its maximal error bound, δ. We assume that the door
is located at d = 22j − ε, so an error-free robot hits the door in the iteration
step 2j with a search depth of f2j = 22j . The faulty robot may miss the
door during the 2jth iteration due to the drift to the left, but hits the door
in a subsequent iteration step 2j + 2k, k ∈ IN0.

22j+2k (1 − δ)
s′

s

∆2j+2k−1 d

2 (1 + δ)

...

2 (1 − δ)

4 (1 − δ)

4 (1 + δ)

8 (1 + δ)

Figure 3.12: In the worst case, the start point of every iteration drifts away from
the door.

To guarantee reachability, we have to assume that the drift away from
to door is maximal; that is, every step of the error-prone robot towards the

88 Chapter 3 Searching with Error-Prone Robots

door is too short and every step to the other side is too long, see Figure 3.12.
Thus, we have ∆k = 2δ (2k+1 − 2). To ensure that the robot hits the door,
the covered distance in the final step has to be at least as large as the sum of
the distance to the door, d, and the overall drift to the left, ∆2j+2k−1. The
final straight path may be erroneous again, but its length is a least the lower
bound of the covered distance in the iteration 2j +2k, that is (1− δ) 22j+2k .
Altogether we have

∆2j+2k−1 + d ≤ (1 − δ) 22j+2k

⇔ 2δ · 22j+2k − 4δ + 22j − ε ≤ (1 − δ) 22j+2k

⇔ 2δ +
1

22k
− ε + 4δ

22j+2k
≤ 1 − δ

⇔ δ ≤ 1

3
· 22k − 1

22k
+

ε + 4δ

3 · 22j+2k

⇐ δ ≤ 1

3
· 22k − 1

22k

If we allow an arbitrary number of additional iterations, the latter term
converges for k → ∞ to 1

3 and we get

Corollary 3.10 Let the distance covered by the robot, `, be in the range
[(1 − δ)f, (1 + δ)f] for δ ∈ [0, 1 [.
If the error δ is not greater than 1

3 the robot reaches the door; that is, for
every d = 22j − ε we can find a k ∈ IN0 such that the robot hits the door in
the iteration step 2j + 2k.

We can also relate the number of additional iterations to the error bound.
For example, we can set k equal to one and get:

Corollary 3.11 If the error δ is not greater than 1
4 in the error model ` ∈

[(1−δ)f, (1+δ)f], the robot reaches the door after at most one iteration step
towards the door more than the error-free robot; that is, for every d = 22j −ε
the robot hits the door at least in the iteration step 2j + 2.

Remark that both bounds are tight; that is, if δ > 1
3 (δ > 1

4) holds, we
can find a distance d = 22j − ε, such that the robot does not reach the goal
with an arbitrary number of steps (2j + 2 steps, respectively).

In the second error model we have

∆2j+2k−1 + d ≤ 1

1 + δ
22j+2k

⇔
(

1 + δ − 1

1 + δ

) (

22j+2k − 2
)

+ 22j − ε ≤ 1

1 + δ
22j+2k

⇔
(

(1 + δ)2 − 1
)(

1 − 2

22j+2k

)

+
1 + δ

22k
− ε (1 + δ)

22j+2k
≤ 1

3.2 Finding a Door 89

⇐ δ2 +

(

2 +
1

22k

)

δ +
1

22k
− 1 ≤ 0

⇔ δ ≤
√

2 +
1

24k+2
− 1 − 1

22k+1

This yields, for example, for k → ∞ and k = 1:

Corollary 3.12 If the error δ is not greater than
√

2−1 in the error model
` ∈ [1

1+δ
f, (1 + δ)f], the robot reaches the door with an arbitrary number of

additional steps, and for δ ≤
√

129
64 − 9

8 ≈ 0.29 the robot hits the door after
only two iteration steps more than the error-free robot.

3.2.3.2 Competitive Factor

Now, we analyze the performance of the doubling strategy fi = 2i with an
error-prone robot in the competitive framework.

Theorem 3.13 Let the distance covered by the robot, `, be in the range
[(1 − δ)f, (1 + δ)f] for δ ∈ [0, 1 [. If the error δ is not greater than 1

3 the
robot finds the door with the doubling strategy fi = 2i. The covered path is
not longer than 1 + 8 1+δ

1−3δ
times the shortest path to the door.5

Proof. For the competitive setting it is the worst, if the door is hit in
the iteration step 2j + 2, but located just a little bit farther away than the
rightmost point that was reached in the 2jth iteration. Additionally, we
have to consider the case, in which the goal is exactly one unit away from
the start. We discuss this case at the end of this proof.

We want the door to be located closely behind the rightmost point visited
in the iteration step 2j. Considering the drift ∆2j−1, the distance from the
start point s to the door is

d = `+
2j −

2j−1
∑

i=1

(`−i − `+
i) + ε .

The total path length is the sum of the covered distances up to the start
point of the final iteration, the distance from this point to the original start
point s (i. e., the overall drift), and the distance to the door:

|πonl| =
2j+1
∑

i=1

(`−i + `+
i) +

2j+1
∑

i=1

(`−i − `+
i) + d .

5More precisely, the factor is 1 + 8 1+δ
1−3δ+ε

for an arbitrary small ε, which is crucial for

the case δ = 1
3
, but neglectable in all other cases. For convenience we omit the ε in this

and the following theorems.

90 Chapter 3 Searching with Error-Prone Robots

Thus, we have the worst-case ratio

|πonl|
d

≤ 1 +

∑2j+1
i=1 2`−i

`+
2j −

∑2j−1
i=1 (`−i − `+

i) + ε
. (3.1)

We can see that this ratio achieves its maximum if we maximize every
`−i ; that is, if we set `−i to (1 + δ)2i in this error model. Now, we have to
fix `+

i to maximize the ratio. Obviously, the denominator gets its smallest
value if every `+

i is as small as possible, therefore we set `+
i to (1 − δ)2i.

Thus, the worst case is achieved—as in the previous section—if every step
to the right is too short and every step to left is too long, yielding a maximal
drift away from the door, see Figure 3.12. Altogether, we get

|πonl|
d

≤ 1 +

∑2j+1
i=1 2`−i

`+
2j −

∑2j−1
i=1 (`−i − `+

i) + ε

= 1 +
2 (1 + δ)

∑2j+1
i=1 2i

(1 − δ) 22j − 2δ
∑2j−1

i=1 2i + ε

= 1 +
2 (1 + δ) (22j+2 − 2)

(1 − 3δ) 22j + 4δ + ε

< 1 + 8
1 + δ

1 − 3δ
.

For the case that the goal is exactly one step away from the start, we
achieve a factor of 1 + 4 1+δ

1 , which is smaller than the preceding factor.

To reach the door, we have to ensure that the rightmost visited point
proceeds in every iteration step to the right towards the door; that is, the
strategy is strictly monotonically increasing. Thus, the covered distance in
the kth iteration has to exceed the overall drift:

(1 − δ) 2k > ∆k−1 (3.2)

With the preceding equations for ∆i, `
+
i and `−i we have

(1 − δ) 2k > 2δ (2k − 2)

⇔ (1 − 3δ) 2k + 4δ > 0

Thus, if δ is greater than 1
3 , the robot does not pass over the point 4δ right

to s in the worst case. If the door is farther to the right, it may not be
reached. This corresponds to Corollary 3.10 and to the observation that the
denominator of the competitive factor gets negative for δ > 1

3 . 2

Corollary 3.14 Let ` ∈ [1
(1+δ)f, (1+δ)f] for δ > 0 hold. If δ is not greater

than
√

2 − 1 the robot reaches the door using the doubling strategy fi = 2i

with a competitive factor of 1 + 8 (1+δ)2

2−(1+δ)2 .

3.2 Finding a Door 91

Proof. In this error model, we set `−i to 2i(1+δ) and `+
i to 2i

1+δ
. Equation 3.1

yields

|πonl|
d

≤ 1 +
2
∑2j+1

i=1 (1 + δ) 2i

1
1+δ

22j −∑2j−1
i=1

(

1 + δ − 1
1+δ

)

2i + ε

= 1 +
2 (1 + δ)2 (4 − 2

22j)

1 − ((1 + δ)2 − 1)
(

1 − 2
22j

)

+ ε (1+δ)
22j

= 1 +
2 (1 + δ)2 (4 − 2

22j)

2 − (1 + δ)2 +
(

2
22j ((1 + δ)2 − 1)

)

+ ε (1+δ)
22j

< 1 + 8 · (1 + δ)2

2 − (1 + δ)2

Equation 3.2 reads

1

1 + δ
22j > (1 + δ − 1

1 + δ
) (22j − 2)

⇔ ((1 + δ)2 − 1) (22j − 2) < 22j

⇔ (1 + δ)2 < 2 +
2

22j
((1 + δ)2 − 1)

⇐ (1 + δ)2 < 2

⇔ δ <
√

2 − 1
2

So far, we assumed that the robot is not able to recognize the start
point s when passing it. One might ask what happens, if the robot is able
to detect the start point. In this setting, the we obviously have no drift;
that is, ∆i = 0 and `+

i = `−i =: `i holds for every i. Indeed, this is just a
special case of the m-ray search with errors, see Section 3.2.5, and we have

Corollary 3.15 If the robot is able to recognize the start point, in the
error model ` ∈ [(1− δ)f, (1+ δ)f] the doubling strategy fi = 2i achieves an
optimal competitive factor of 3 + 6 1+δ

1−δ
, and in the error model

` ∈ [1
1+δ

f, (1 + δ)f] a factor of 3 + 6 (1 + δ)2.

3.2.4 Taking the Error into Account

In the previous section, we have seen that a faulty robot is able to reach
its goal using the doubling strategy, if its error does not exceed a certain
bound. One may guess that the standard doubling strategy is the best
we can do in the presence of errors, because it is optimal in the error-free
case. Surprisingly, there is a strategy that takes the error δ into account
and yields a competitive factor smaller than the worst-case factor of the
doubling strategy we showed in the previous section.

92 Chapter 3 Searching with Error-Prone Robots

Theorem 3.16 In the error model ` ∈ [(1 − δ)f, (1 + δ)f] with δ ∈ [0, 1 [

there is a strategy, fi =
(

2 1+δ
1−δ

)i
, that always reaches the goal and achieves

a competitive factor of 1 + 8
(

1+δ
1−δ

)2
.

f2

s

g+
1

g−1

g+

2

g−2

g+

3

g−3...

f3

γ2

γ3

f1

Figure 3.13: An asymmetrical strategy can be turned into a symmetrical strategy
(dashed lines).

Proof. Let a strategy, S, be given by a sequence of nonnegative values,
f1, f2, f3, . . ., denoting the nominal values required by the strategy; that is,
in the ith step the strategy wants the robot to move a distance of fi to a
specified direction—to the right if i is even, and to left if i is odd—and to
return to the start point with a movement of fi to the opposite direction.
Remark that every reasonable strategy can be designed this way. Even if we
have an asymmetrical strategy S′ = g+

1 , g−1 , g−2 , g+
2 , g+

3 , . . . (i. e., a strategy
that does not return to start point between two iteration steps), we can
turn S′ into a symmetrical strategy S by adjusting fi+1 with the difference
between g+

i and g−i . In the example shown in Figure 3.13, let every step
towards s be longer than the corresponding step to the opposite site, than
S can be described by

f1 := g+
1 , γ2 := g−1 − g+

1 ,

f2 := g−2 + γ2, γ3 := g+
2 − g−2 − γ2,

f3 := g+
3 + γ3 etc.

As already mentioned, let `+
i and `−i denote the length of a movement

to the right and to the left in the ith step, respectively. In the proof of
Theorem 3.13 we showed for every online strategy a worst-case ratio of

|πonl|
d

= 1 +

∑2j+1
i=1 (2`−i)

`+
2j −

∑2j−1
i=1 (`−i − `+

i) + ε

which achieves its maximum if every step towards the door is as short as
possible and every step in the opposite direction is as long as possible; that

3.2 Finding a Door 93

is, `−i = (1 + δ) fi and `+
i = (1 − δ) fi. This yields

|πonl|
d

= 1 + 2(1 + δ) ·
∑2j+1

i=1 fi

(1 − δ)f2j − 2δ
∑2j−1

i=1 fi + ε
. (3.3)

For a fixed δ, 1 and 2(1+δ) are constant, and it is sufficient to find a strategy
S = f1, f2, f3, . . . that minimizes

Gn,δ(S) :=

∑n+1
i=1 fi

(1 − δ) fn − 2δ
∑n−1

i=1 fi

for n > 0 (3.4)

and G0,δ(S) := f1

1 ; G0,δ(S) is the worst case after the first iteration step.

Now, we are searching for a strategy Sα in the form fi = αi with a
fixed α—possibly depending on δ—that asymptotically minimizes Gn,δ(Sα).
First, we simplify the functional G:

Gn,δ(Sα) =

∑n+1
i=1 αi

(1 − δ)αn − 2δ
∑n−1

i=1 αi

=
αn+2−α

α−1

(1 − δ)αn − 2δ αn−α
α−1

=
α2 − 1

αn−1

(α − 1)(1 − δ) − 2δ + 2δ
αn−1

<
α2

(1 − δ)α − δ − 1
=: Hδ(α)

To find a minimum of Hδ(α) we derivate and find the roots

H ′
δ(α) =

2α ((1 − δ)α − δ − 1) − (1 − δ)α2

((1 − δ)α − δ − 1)2

=
(1 − δ)α2 − 2 (1 + δ)α

(1 − δ)2 α2 − 2 (1 − δ2)α + (1 + δ)2
= 0

⇔ (1 − δ)α2 − 2 (1 + δ)α = 0

⇔ α = 0 ∨ α =
2 (1 + δ)

1 − δ

A strategy with α = 0 does not move the robot at all, so α = 2 1+δ
1−δ

is

the only reasonable root. Note that the denominator of H ′
δ(2

1+δ
1−δ

) yields

(1 + δ)2 6= 0 for δ ≥ 0. To test whether this α is a maximum or minimum,
we use the second derivative. We want to evaluate H ′′

δ (α) only for the roots

94 Chapter 3 Searching with Error-Prone Robots

of the numerator of H ′
δ(α); therefore, we can use a simplified form:6

H ′′
δ

∣
∣
∣
N ′(x)=0

(α) =
2 (1 − δ)α − 2 (1 + δ)

(1 + δ)2
.

This yields 2
1+δ

> 0 for α = 2 1+δ
1−δ

, so we have found a minimum.

To give the competitive factor of our strategy fi =
(

2 1+δ
1−δ

)i
we evaluate

Hδ(α). This yields:

Hδ

(

2
1 + δ

1 − δ

)

=
4
(

1+δ
1−δ

)2

2 (1 − δ) 1+δ
1−δ

− δ − 1
= 4

1 + δ

(1 − δ)2
,

and G0,δ(S) = 2 1+δ
1−δ

≤ 4 1+δ
(1−δ)2

for δ ∈ [0, 1 [. With Equation 3.3 we get

|πonl|
d

≤ 1 + 2(1 + δ) · 4 1 + δ

(1 − δ)2
= 1 + 8

(
1 + δ

1 − δ

)2

.

Note that 1 + 8
(

1+δ
1−δ

)2
≤ 1 + 8 1+δ

1−3δ
holds for δ ∈ [0, 1 [, so our strategy

achieves a better competitive factor than the doubling strategy that ignores
the presence of errors.

Finally, we check whether our strategy is able to find an arbitrary goal;
that is, if the covered distance exceeds the overall drift, see Equation 3.2 on
page 90:

(1 − δ) fk − ∆k−1 = (1 − δ)

(

2
1 + δ

1 − δ

)k

− 2δ
k−1∑

i=1

(

2
1 + δ

1 − δ

)i

(3.5)

= (1 − δ)

(

2
1 + δ

1 − δ

)k

− 2δ

(

2 1+δ
1−δ

)k
− 2 1+δ

1−δ

2 1+δ
1−δ

− 1

=
(1 + 3δ)

(

2 1+δ
1−δ

)k
− 2δ

(

2 1+δ
1−δ

)k
+ 4δ 1+δ

1−δ

1+3δ
1−δ

=

((

2 1+δ
1−δ

)k
+ δ

(

2 1+δ
1−δ

)k
+ 4 1+δ

1−δ

)

(1 − δ)

1 + 3δ
> 0 for δ ∈ [0, 1 [

Thus, the robot proceeds towards the door and every goal can be reached.

2

6The derivative of a function of type f(x) = N(x)
D(x)

is f ′(x) = D(x)·N′(x)−N(x)·D′(x)

(D(x))2
.

If we want to evaluate f ′(x) only for the roots of N(x), the derivative simplifies to

f ′
∣
∣
N(x)=0

(x) = N′(x)
D(x)

[121]. In this case, the denominator of H ′′
δ simplifies to (1 + δ)2

for the roots of the numerator of H ′
δ.

3.2 Finding a Door 95

So far, we have found a strategy that takes the error into account and
achieves a better competitive factor than the doubling strategy that is not
aware of errors. Now, we want to show that no strategy can achieve a better
factor. There are two common ways to show the optimality of a search
strategy, which are interesting for themselves, so we discuss both of them.

The first method is to use a theorem by Gal [64] to find a sequence
that minimizes a functional that fulfills certain conditions—essentially ho-
mogeneity and unimodality.7 In the proof of Theorem 3.16, we established
a functional, Equation 3.3, which describes the competitive factor for every
reasonable strategy. To minimize Equation 3.3 for a fixed δ, it is sufficient
to minimize the functionals

Gn,δ(S) =

∑n+1
i=1 fi

(1 − δ) fn − 2δ
∑n−1

i=1 fi

,

see Equation 3.4. To show that these functionals are unimodal, let C :=
max{Gn,δ(S), Gn,δ(S

′)} (i. e., Gn,δ(S) ≤ C and Gn,δ(S
′) ≤ C). Thus, we

have

n+1∑

i=1

fi ≤ C
(

(1 − δ) fn − 2δ
n−1∑

i=1

fi

)

and

n+1∑

i=1

f ′
i ≤ C

(

(1 − δ) f ′
n − 2δ

n−1∑

i=1

f ′
i

)

Adding both inequations yields

n+1∑

i=1

(fi + f ′
i) ≤ C

(

(1 − δ) (fn + f ′
n) − 2δ

n−1∑

i=1

(fi + f ′
i)
)

,

⇐⇒ Gn,δ(S + S′) ≤ C .

It can easily be verified that Gn,δ(S) meets also the other requirements.
Thus, by Gal’s Theorem a function fi = αi minimizes Gn,δ(S). Now, we
only have to find an appropriate α as we have already done in the proof of
Theorem 3.16.

Another way to show the optimality of our strategy is the following.
We have seen in the proof of Theorem 3.16 that there is a constant upper
bound for Gn,δ(S) that depends on δ. Let Cδ(S) := supn Gn,δ(S) be the
competitive factor of an arbitrary strategy S. For a fixed δ, let Sδ denote a
strategy that minimizes Cδ(S), and let C∗

δ denote the corresponding factor;
that is, C∗

δ := Cδ(Sδ) = infS Cδ(S). Now, we show that there is always a

7That is, the functional fulfills the conditions F (c ·S) = F (S) for every constant c > 0
and F (S + S′) ≤ max{F (S), F (S′)} for every sequences S, S′.

96 Chapter 3 Searching with Error-Prone Robots

strategy S∗
δ that achieves C∗

δ not only asymptotically, but exactly in every
step; that is, Gn,δ(S

∗
δ) = C∗

δ holds for n ≥ 1. In the error-free case, for
example, the strategy fi = (i + 1) 2i achieves the factor 9 exactly in every
step. With this, we establish a recurrence and a closed form that describe
S∗

δ . Finally, the condition fi > 0 leads to a lower bound for C∗
δ . The

idea of using equality is used, for example, in [131] and [122]. Note that
both approaches are applicable only for search problems that depend on
one sequence, S. Recently, it was shown that it is possible to combine both
approaches to solve a search problem that depends on two independently
defined sequences, S1 and S2; for example, a sequence of hit points and a
sequence of leave points on rays [105].

Lemma 3.17 Let ` ∈ [(1 − δ)f, (1 + δ)f] for δ ∈ [0, 1 [hold. For every δ
there is a strategy S∗

δ that achieves C∗
δ exactly for every Gn,δ(S

∗
δ); that is,

Gn,δ(S
∗
δ) = C∗

δ holds for n ≥ 1.

Proof. Let S = (f1, f2, f3, . . .) be a C∗
δ -competitive strategy. We can as-

sume that S is strictly positive; that is, fi > 0 holds. We show that for
every n ≥ 1 there is always a strategy S∗

δ that fulfills Gk,δ(S
∗
δ) = C∗

δ for
every 1 ≤ k ≤ n by adjusting S adequately.

Deriving the functional

Gn,δ(S) =

∑n+1
i=1 fi

(1 − δ) fn − 2δ
∑n−1

i=1 fi

for fn yields
−(1−δ) fn+1−(1+δ)

∑n−1

i=1
fi

(
(1−δ) fn−2δ

∑n−1

i=1
fi

)2 ; thus, Gn,δ(S) is decreasing in fn.

The denominator of Gn,δ(S) describes the progress towards the door,
compare to Equation 3.5. We can assume that (1 − δ)fn − 2δ

∑n−1
i=1 fi > 0

holds; otherwise, the strategy does not increase the search depth in this step
and there would be a better strategy.

Now, we can describe Gn,δ(S) by a function g(fn) := fn+A
C·fn−B

with
A,B,C > 0 and Cfn − B > 0. g(fn) is positive and strictly decreasing
for fn > 0. On the other hand, g(fn) goes to infinity, if fn decreases to-
wards fn = B

C
. Altogether, we can increase Gn,δ(S) continuously to any

desired value by decreasing fn adequately.

Further, it is easy to see that Gk,δ(S) is increasing in fn for every k 6= n:

• For k < n − 1, Gk,δ(S) is not affected by fn at all.

• For k = n − 1, fn appears only in the numerator of Gk,δ(S), which
increases if fn grows.

• For k > n the numerator increases and the denominator shrinks for a
growing fn because of the coefficient −2δ.

3.2 Finding a Door 97

Vice versa, Gk,δ(S) is decreasing in fn for every k 6= n if fn reduces. Thus,
by shrinking fn we decrease every Gk,δ(S) for k 6= n.

Now, we show by an induction over n that we can decrease our strictly
positive, C∗

δ -competitive strategy S to a strictly positive strategy S∗
δ , which

fulfills Gk,δ(S
∗
δ) = C∗

δ for every 1 ≤ k ≤ n. Additionally, S∗
δ is equal to S

for every fi with i ≥ n + 1.

For n = 1 let us assume that G1,δ(S) ≤ C∗
δ holds; otherwise we are

done. Using the preceding argumentation, we decrease f1 by a small value
ε > 0 to f ′

1 := f1 − ε > 0 such that G1,δ(S
′) = C∗

δ holds. Every Gk,δ(S
′)

with k 6= 1 decreases; thus, the new strategy is still C∗
δ -competitive. f ′

2 is
strictly positive, so f ′

1 has to be strictly positive; otherwise, the numerator
of G1,δ(S

′) decreases, and, in turn, G1,δ(S
′) decreases.

For the induction step, we assume that Gk,δ(S) = C∗
δ holds for every

1 ≤ k ≤ n. Let Gn+1,δ(S) < C∗
δ ; otherwise we are done. As in the previous

case, we adjust S to S(1) by decreasing fn+1 to f
(1)
n+1 := fn+1 − ε such that

Gn+1,δ(S
(1)) = C∗

δ holds. With the preceding argumentation we know that

Gk,δ(S
(1)) decreases for k 6= n. Again, f

(1)
n+1 has to be strictly positive,

because f
(1)
n+2 is strictly positive.

Now, unfortunately, Gn,δ(S
(1)) < C∗

δ holds and we have to apply the

induction hypothesis again: We adjust S(1) to S(2) by decreasing f
(1)
n again

such that Gk,δ(S
(2)) = C∗

δ holds for every 1 ≤ k ≤ n. Again, S(2) is strictly
positive. Now, in turn, we have Gn+1,δ(S

(2)) < C∗
δ and we have to adjust

S(2) again by decreasing f
(2)
n+1 adequately.

Altogether, the process described previously generates for every element

fi, 1 ≤ i ≤ n+1, of S a sequence of values f
(k)
i . This sequence is strictly de-

creasing, whereas every f
(k)
i is strictly positive; thus, the sequence converges

towards an unique, positive limit. Let S∗
δ be the sequence of limit values;

that is, f∗
i := limk→∞ f

(k)
i . S∗

δ fulfills Gk,δ(S
∗
δ) = C∗

δ for 1 ≤ k ≤ n + 1,
which finishes the induction and the proof. 2

Now, we can assume that there is an optimal strategy S∗
δ with Gn,δ(S

∗
δ) =

C∗
δ for every n ≥ 1, and give a lower bound for the competitive factor.

Theorem 3.18 In the error model ` ∈ [(1 − δ)f, (1 + δ)f] for δ ∈ [0, 1 [,
no strategy for searching a point on a line yields a competitive factor smaller
than

1 + 8

(
1 + δ

1 − δ

)2

.

Proof. We describe an optimal strategy S∗
δ that fulfills Gn,δ(S

∗
δ) = C∗

δ for
every n ≥ 1 by a recurrence. From Gn−1,δ(S

∗
δ) = Gn−2,δ(S

∗
δ) = C∗

δ we

98 Chapter 3 Searching with Error-Prone Robots

conclude
n∑

i=1

f∗
i = C∗

δ

(

(1 − δ)f∗
n−1 − 2δ

n−2∑

i=1

f∗
i

)

and

n−1∑

i=1

f∗
i = C∗

δ

(

(1 − δ)f∗
n−2 − 2δ

n−3∑

i=1

f∗
i

)

.

Subtracting both yields for all n ≥ 3

f∗
n = C∗

δ (1 − δ)f∗
n−1 − C∗

δ (1 + δ) f∗
n−2 (3.6)

This equation is a linear, homogeneous recurrence of degree r = 2 and
can be solved using standard techniques as described, for example, in Gra-
ham et al. [68]. First, we find the characteristic polynom, χ(t), by building a

generating function, F(t), and “reflecting” the denominator of F(t) = N(t)
D(t) ;

that is, χ(t) = tr · D(1
t
). This yields

χ(t) = t2 − C∗
δ (1 − δ) t + C∗

δ (1 + δ) .

χ(t) has the roots

z, z =
1

2

(

C∗
δ (1 − δ) ±

√

C∗
δ (C∗

δ (1 − δ)2 − 4 (1 + δ))

)

.

where z denotes the conjugate of z. With this, the recurrence is given in the
closed form:8

f∗
n = λ zn + λ zn = 2Re(λ zn).

λ and λ are determined by the equations

f∗
1 = λ + λ and

f∗
2 = λz + λz ,

and therefore by the starting values f∗
1 and f∗

2 .
Now, we use a property of complex numbers to establish a lower bound

for C∗
δ , see [82, 115]. We can represent complex numbers z = a+ bi by polar

coordinates z = |z| · eiϕ with ϕ = arg(z), and multiply two numbers z1 and
z2 by z1 · z2 = |z1| · |z2| · ei(ϕ1+ϕ2); thus, essentially, we add the angles the
complex numbers form with the positive X axis.

If the radiant, C∗
δ

(
C∗

δ (1 − δ)2 − 4(1 + δ)
)
, of z is negative, then z is not

real and arg(z) 6= 0 holds. In this case, there exists a smallest natural
number k such that arg(zk) ≥ π

2 holds; that is, λzk lies in the left halfplane
{X ≤ 0}. Thus, also the conjugate of λzk lies in the left halfplane and
fk = λzk+λzk becomes zero or negative, which is a contradiction because the
f∗

i ’s have to be positive for any optimal strategy S∗. The roots of the radiant

8Re(z) denotes the real part, b, of a complex number z = a + bi.

3.2 Finding a Door 99

are 0 and 4 1+δ
(1−δ)2 . Thus, f∗

k becomes negative or zero, if C∗
δ < 4 1+δ

(1−δ)2 holds.

With Equation 3.3 on page 93 this yields an overall competitive factor of at
least

1 + 8

(
1 + δ

1 − δ

)2

,

which exactly matches the factor of the strategy described in Theorem 3.16.

2

Remark that the proof also holds for δ = 0, which gives another proof of
the factor 9 for the optimal strategy in the error-free case. Thus, line search
with errors is generalized adequately.

Now, we want to state similar results in the second error model. We use the
same techniques as in the previous proofs, so we give only a brief overview.

Corollary 3.19 In the error model ` ∈ [1
(1+δ)f, (1 + δ)f] for δ > 0 there

is a strategy, fi =
(

2(1 + δ)2
)i

, that always reaches the goal and achieves an
optimal competitive factor of

1 + 8(1 + δ)4 .

Proof. We proceed exactly as in the proofs of Theorem 3.16, Lemma 3.17
and Theorem 3.18. Again, the competitive factor achieves its maximum if
every step towards the door is as short as possible and every step in the
opposite direction is as long as possible; that is, we set `−i = (1 + δ) fi and
`+
i = 1

1+δ
fi in this error model. Analogously to Equation 3.3 on page 93

this gives a competitive factor of

|πonl|
d

= 1 +

∑2j+1
i=1 (2`−i)

`+
2j −

∑2j−1
i=1 (`−i − `+

i) + ε

= 1 +

∑2j+1
i=1 (1 + δ) fi

f2j

1+δ
−∑2j−1

i=1

(

1 + δ − 1
1+δ

)

fi + ε

= 1 + 2 (1 + δ)2 ·
∑2j+1

i=1 fi

f2j − δ (2 + δ)
∑2j−1

i=1 fi + ε

1 and 2 (1 + δ)2 are constant for a fixed δ, so it suffices to consider the
functionals—compare Equation 3.4—

Gn,δ(S) :=

∑n+1
i=1 fi

fn − δ(2 + δ)
∑n−1

i=1 fi

for n > 1 .

We search for a strategy fi = αi that minimizes

Gn,δ(Sα) =

∑n+1
i=1 αi

αn − δ(2 + δ)
∑n−1

i=1 αi
=

α2 − 1
αn−1

α − 1 − 2δ − δ2 + δ (2+δ)
αn−1

<
α2

α − 1 − 2δ − δ2
=: Hδ(α)

100 Chapter 3 Searching with Error-Prone Robots

by deriving Hδ(α) and finding the roots:

H ′
δ(α) =

α (α − 2 − 4δ − 2δ2)

(α − 1 − 2δ − δ2)2
= 0

⇔ α = 0 ∨ α = 2δ2 + 4δ + 2 = 2(1 + δ)2

This is a minimum, because

H ′′
δ

∣
∣
∣
N ′(x)=0

(α) =
2α − 2 − 4δ − 2δ2

(α − 1 − 2δ − δ2)2
and

H ′′
δ

∣
∣
∣
N ′(x)=0

(

2δ2 + 4δ + 2
)

=
2δ2 + 4δ + 2

(δ2 + 2δ + 1)2
> 0

Hδ

(
2δ2 + 4δ + 2

)
yields 4 (1+ δ)2, so we get an overall competitive factor of

|πonl|
d

≤ 1 + 8 (1 + δ)4 .

The strategy proceeds in every iteration step at least by

1

1 + δ
fn − ∆n =

αn

1 + δ
− δ (2 + δ)

1 + δ
·

n−1∑

i=1

αi

=
αn

1 + δ
− δ (2 + δ)

1 + δ
· αn − α

α − 1

=
(1 + 4δ + 2δ2)αn − δ (2 + δ)αn + δ (2 + δ)α

(1 + δ)(1 + 4δ + 2δ2)

=
(1 + 2δ + δ2)αn + δ (2 + δ)α

(1 + δ)(1 + 4δ + 2δ2)
> 0 for δ > 0

and the strategy reaches every goal.

Finally, we show that the given strategy is optimal. Lemma 3.17 holds
also for this model. With the same technique we adjust a given strategy such
that the optimal factor is achieved exactly in every step. From Gn−1,δ(S

∗
δ) =

Gn−2,δ(S
∗
δ) = C∗

δ we conclude

n∑

i=1

f∗
i = C∗

δ

(

f∗
n−1 − δ(2 + δ)

n−2∑

i=1

f∗
i

)

and

n−1∑

i=1

f∗
i = C∗

δ

(

f∗
n−2 − δ(2 + δ)

n−3∑

i=1

f∗
i

)

.

Thus, analogously to Equation 3.6, an optimal strategy is described by the
recurrence

f∗
n = C∗

δ f∗
n−1 − C∗

δ (1 + δ)2 f∗
n−2 for n ≥ 3 ,

3.2 Finding a Door 101

and the characteristic polynom χ(t) = t2 − C∗
δ t + C∗

δ (1 + δ)2 has the roots

z, z̄ =
1

2

(

C∗
δ ±

√

C∗
δ (C∗

δ − 4(1 + δ)2)

)

.

The radiant is nonnegative for C∗
δ ≥ 4(1+δ)2. With the same arguments

as in the proof of Theorem 3.18 we conclude that the competitive factor is
at least 1 + 8(1 + δ)4. 2

3.2.5 Error-Prone Searching on m Rays

2m

s

fm+1

f1 fm+2

f3

f2

fm

1

3

Figure 3.14: Searching on m rays.

In the previous sections we considered the search for a goal on an infinite
line. This can be generalized to a search on m infinite rays emanating from
the robot’s start point. The target is located on one of the rays, but—as in
the previous case—the searcher neither knows the ray containing the target
nor the distance to the target.

It was shown by Gal [64] that w. l. o. g. the rays can be visited in a cyclic
order and with increasing depth. Strategies with this properties are called
periodic and monotone. We can describe such strategies by a sequence of
values f1, f2, . . . with fi < fi+m. In the ith step, the searcher visits the ray
i mod m up to the distance fi and returns to the start point, see Figure 3.14.

An optimal strategy is described by fi =
(

m
m−1

)i
and achieves a competitive

factor of 1 + 2m
(

m
m−1

)m−1
[64, 11]

102 Chapter 3 Searching with Error-Prone Robots

Even if the robot’s movement is erroneous, the robot is able to return to
its start point, s, because this is the only point in the environment where
the rays meet. The robot has to recognize this point; otherwise, we cannot
guarantee that all rays are visited. However, the search depth may vary
from the nominal value. These variations may influence the correctness and
the competitive factor of a strategy. Let us first assume that the error, δ,
is known to the strategy. Surprisingly, it turns out that we do not have to
distinguish whether δ is known or unknown to the strategy.

Theorem 3.20 Let the distance covered by the robot, `, be in the range
[(1− δ)f, (1+ δ)f] for δ ∈ [0, 1 [. Searching for a target located on one of m
rays using a monotone and periodic strategy is competitive with an optimal
factor of

3 + 2
1 + δ

1 − δ

(
mm

(m − 1)m−1
− 1

)

for δ < e−1
e+1 .

Proof. Let S be a periodic and monotone strategy given by a sequence of
values f1, f2, f3, . . ., and let `i denote the distance covered by the robot in
the ith step. Similar to the search on a line, we establish a functional that
describes the worst case of any possible strategy and look for a sequence
that minimizes this functional. As in the previous sections, we achieve the
worst case if the target is slightly missed in step k, but hit in step k + m.
This yields a worst-case ratio of

|πonl|
d

= 1 +
2
∑k+m−1

i=1 `i

`k + ε
. (3.7)

This ratio achieves its maximum, if we maximize every `i for i 6= k and
choose a worst-case value for `k. Therefore, we set `k := (1 + β) fk with
β ∈ [−δ, δ], and `i := (1 + δ) fi for i 6= k. This yields9

|πonl|
d

= 1 +
2

(1 + β) fk

(

(1 + β) fk + (1 + δ)
∑

i=1,...,k+m−1
i6=k

fi

)

= 1 +
2

(1 + β) fk

(

(1 + β) fk + (1 + δ)(
k+m−1∑

i=1

fi) − (1 + δ) fk

)

= 1 + 2 +
2(1 + δ)

∑k+m−1
i=1 fi

(1 + β) fk

− 2
1 + δ

1 + β

= 3 + 2
1 + δ

1 + β

(∑k+m−1
i=1 fi

fk
− 1

)

.

9For convenience we omit ε in the following.

3.2 Finding a Door 103

Obviously, this ratio achieves its maximum for β = −δ. Thus, we want

to find a sequence that minimizes 3+2 1+δ
1−δ

(∑k+m−1

i=1
fi

fk
− 1

)

, which, in turn,

amounts to consider the functionals

Gk(S) :=

∑k+m−1
i=1 fi

fk
,

because 2 1+δ
1−δ

is constant for a fixed δ. These functionals are identical to
the functionals considered in the error-free m-ray search; thus, we can use

the results known for this case. That is, the strategy fi =
(

m
m−1

)i
yields an

optimal upper bound of Gk(S) < mm

(m−1)m−1 , see [11, 64]. Altogether, we get

the worst-case ratio

3 + 2
1 + δ

1 − δ

(
mm

(m − 1)m−1
− 1

)

,

and the factor as well as the optimality are shown. Remark that the optimal
strategy does not depend on δ; thus, we do not have to distinguish whether
the error range is known or unknown to the strategy.

Finally, we have to ensure that our strategy is still monotone even if
the robot’s movement is erroneous. Thus, we have to make sure that the
maximal covered distance in the step fk−m does not exceed the minimal
covered distance in the step fk; that is, (1− δ) fk > (1 + δ) fk−m holds. For

the strategy fi =
(

m
m−1

)i
we get

(1 − δ)

(
m

m − 1

)k

> (1 + δ)

(
m

m − 1

)k−m

⇔ δ <

(
m

m−1

)m
− 1

(
m

m−1

)m
+ 1

=: δmax(m).

δmax(m) converges to e−1
e+1 ≈ 0.4621 (from above) for m → ∞. Thus, we can

be sure that our strategy is monotone, if δ < e−1
e+1 holds. 2

Corollary 3.21 Let the distance covered by the robot, `, be in the range
[1

1+δ
f, (1 + δ)f] for δ > 0. Searching for a target located on one of m rays

using a monotone and periodic strategy is competitive with an optimal factor
of

3 + 2 (1 + δ)2
(

mm

(m − 1)m−1
− 1

)

for δ <
√

e − 1.

104 Chapter 3 Searching with Error-Prone Robots

Proof. With the same arguments as in the proof of Theorem 3.20 the worst-
case ratio of Equation 3.7 is maximized for `k := 1

1+β
fk with β ∈ [0, δ], and

`i := (1 + δ) fi for i 6= k. This yields

|πonl|
d

= 1 + 2 (1 + β)
(1 + δ)

(
∑k+m−1

i=1 fi

)

− (1 + δ) fk + 1
1+β

fk

fk

= 3 + 2 (1 + β)(1 + δ)

(∑k+m−1
i=1 fi

fk
− 1

)

.

This maximizes for β = δ, and we get the same functionals and the same
strategy as in the previous case.

To ensure monotonicity we have to fulfill 1
1+δ

(
m

m−1

)k
> (1 + δ)

(
m

m−1

)k−m
,

which is equivalent to δ <

√
(

m
m−1

)m
− 1 ≤ √

e − 1. 2

3.3 Summary

We have seen that is possible to incorporate erroneous behaviors into the
robot model while we are still able to give theoretically funded analysis.
We considered the Pledge algorithm under errors in sensors and motion and
established sufficient requirements for the robot. Particularly, we showed
that a robot equipped with a simple compass will fulfill this task. For an
implementation of an error-prone Pledge algorithm see [78].

Further, we analyzed the usual doubling strategy, fi = 2i, for reaching
a door along a wall in the presence of errors in movements. In the error
model [(1 − δ)fi, (1 + δ)fi], δ ∈ [0, 1[, we showed that the robot is still able
to reach the door if the error δ not greater than 1

3 . Moreover, if the error
not greater than 1

4 the robot will need at most two iteration steps more than
the error-free robot. Both error bounds are rather big—33 percent and 25
percent—, so it can be expected that real robots will meet this error bounds.
The competitive factor of this strategy is given by 8 1+δ

1−3δ
+ 1.

If the maximal error is known to the strategy, there is a strategy that
takes the error into account and achieves a better factor than the strategy

fi = 2i. The strategy fi =
(

2 1+δ
1−δ

)i
achieves the optimal competitive factor

of 1 + 8
(

1+δ
1−δ

)2
. Table 3.1 shows the competitive factors for several given

error bounds.
The case of m rays the problem is easier to solve, because the robot

detects the start point between two iterations. If the error δ is not greater

than δmax(m) =
(m

m−1)
m
−1

(m
m−1)

m
+1

—which is less than e−1
e+1 ≈ 0.46 for every m—the

standard m-ray doubling strategy with fi =
(

m
m−1

)i
is the optimal periodic

and monotone strategy and yields a factor 3+ 21+δ
1−δ

(
mm

(m−1)m−1 − 1
)

. In this

3.3 Summary 105

setting it may be interesting to consider turning errors that may prevent the
robot from entering the next corridor correctly.

competitive factor
line search m-ray search

δ δ unknown δ known

0 9 9 2em + 1
0.1 ≈ 13.571 ≈ 12.95 ≈ 2.44em + 0.55
0.2 25 19 3em
0.25 41 ≈ 23.22
0.3 105 ≈ 28.59
0.33 1065 ≈ 32.52
1/3 — 33 4em − 1
0.46 — ≈ 5.41em − 2.41
1/2 — 73
0.9 — 2889

Table 3.1: Competitive factor for several error bounds in the error model
[(1 − δ)fi, (1 + δ)fi], δ ∈ [0, 1 [.

However, we considered only two very easy tasks in robot motion plan-
ning. Now, of course, it is interesting to know how other theoretically well-
understood algorithms behave in the presence of errors. The exploration of
simple polygons using the strategy PolyExplore by Icking et al. [84] may be
very useful to the robotics community, so it might be worthwhile to consider
the influence of errors to this algorithm. Another concern is the behavior
of algorithms designed for orthogonal scenes in δ-pseudo-orthogonal scenes.
Especially, it is interesting to know how the exploration strategy by Deng
et al. [43] adapts to δ-pseudo-orthogonal scenes. As for the searching on a
line, we can consider two different tasks in this case. First, we may consider
a strategy that is not aware of deviations from the orthogonality, and ask for
the performance of the exploration strategy by Deng et al. depending on δ.
The second question is, how an exploration strategy benefits from knowing
the maximal divergence, δ. Or, similarly, we may ask whether PolyExplore
benefits from the knowledge that angles in its surroundings cannot be arbi-
trarily small.

Concerning mazes it might be interesting to know how to escape from an
unknown maze with one-way roads. Imagine, you are leaving the old quarter
of a large city. The city is surrounded by a ring of larger streets. As soon as
you reach this ring, there are traffic signs that lead you to your destination,
but you have no clue how to get there. To make things worse, there are
many one-way roads in the old quarter. We can model this problem, for ex-
ample, by adding directed edges between obstacle boundaries. The searcher

106 Chapter 3 Searching with Error-Prone Robots

P1

e

s

Figure 3.15: Applying the Pledge algorithm to environments with one-way roads
does not work.

is allowed to cross this edges only from the left to the right—seen in the
direction of the edge—but never the opposite way. It is easy to see that we
cannot apply the Pledge algorithm treating the ends of one-way roads as
obstacle edges if we encounter them from the wrong side. Figure 3.15 shows
an example with one one-way road e. A robot starting in s hits the obstacle
P1, passes e, and leaves P1. Following the second obstacle, the robot meets
the exit side of e. Thus, it follows e and circles P1 again. The angle counter
gets zero in the same vertex of P1 as in the first visit and the robot is trapped
in an endless loop. Therefore, the simple treatment of one-way roads does
not work and we a more sophisticated strategy.

Chapter 4

Optimal Search Paths

We have seen that exploration and searching are fundamental tasks in online
motion planning and well-studied in many settings. Both tasks seem to be
closely related: Every search strategy has to ensure that every point in the
environment is inspected; thus, every search strategy is also an exploration
strategy. However, there is a fundamental difference between searching and
exploration: An online exploration strategy competes with the shortest off-
line exploration path, whereas an online search strategy is compared to the
shortest path from the start to the goal. Therefore, it is necessary for a
search strategy to explore the environment in a breadth-first manner to
achieve a (good) competitive factor; that is, the strategy has to scan the
environment located closely to start point before it deals with locations
further away. In the previous chapter, for example, we have seen search
strategies for a point on a line and on m rays. Both strategies iteratively
increase the search depth.

On the other hand, it is more reasonable for an exploration strategy
to explore the environment in a depth-first manner to avoid unnecessary
routes; thus, an exploration completely explores areas farther away before it
returns to the start. For example, the strategies SmartDFS and CellExplore
we have seen in Chapter 2 proceed that way.

Moreover, there are environments that can be explored with a constant
competitive factor although no search strategy is able to achieve such a fac-
tor; see, for example, the simple polygon shown in Figure 4.1: The polygon
with n vertices consists of n

4 corridors of length 1 ending with a little pocket.
One of the pockets contains the target. In the worst case, the target is lo-
cated in the last visited corridor, yielding a path length in Ω(n), whereas
the length of the shortest path from s to t is 1 + ε.

Although in such a setting no search strategy can compete with the
optimal solution in terms of the competitive framework, there still may
be paths through the environment that are better suited for searching than
others. The competitive ratio is no appropriate measure of quality; therefore,

108 Chapter 4 Optimal Search Paths

1

s

Figure 4.1: No search strategy achieves a competitive factor better than Ω(n) [115].

we need to find another way to rate search paths.

In this chapter, we consider the search ratio as a measure of quality. The
search ratio was introduced by Koutsoupias et al. [118] and considered by
Fleischer et al. [59] for different settings. The quality of a search path is
determined by a worst-case target point—a point that maximizes among all
target points, t, the ratio between the length of the searcher’s path up to t
and the shortest path to t, see Definition 4.1. An optimal search path has
the minimal search ratio among all search paths in the given environment.
The optimal search ratio—the search ratio of the optimal search path—is
an appropriate measure for the searchability of an environment. Thus, a
“good” search path is a path that achieves a good approximation of the
optimal search path.

For some types of environments it is easy to find optimal search paths
even online, because every optimal competitive search strategy computes an
optimal search path. Such strategies are known, for example, for searching
a point on a line or on m rays [64, 11], see also Section 3.2; for searching in a
special class of simple polygons called streets, see Klein [113] and Icking et al.
[94]; or a special case of searching for a ray, the window shopper problem,1

see Eubeler et al. [54]. However, for other types of environments it is hard to
find an optimal search path even for easy examples, and even in the offline
case, see [118, 59]. For instance, in a simple polygon we obviously have to
visit the essential cuts, see Section 4.2.2. But even if we have given the
optimal visiting order for the cuts, it is not clear, how to visit them.

1A buyer walks along a line of shopping windows, looking for a present. As soon as
an appropriate item is sighted, the buyer walks towards the window. Thus, the task is to
find the origin (the item) of a ray, r (the line of sight), that is located on another ray, r′

(the shopping windows). r′ is perpendicular to r, its position is known, and the searcher’s
start point and r are located on the same side of r′.

4.1 Definitions 109

Intuitively, one may guess that the cuts are
visited with the law of reflection2 similar to
the shortest watchman route, see Chin and
Ntafos [32], but Eubeler [53] found a coun-
terexample to this conjecture: In the figure,

SWRπopt

s

the optimal search path, πopt, moves directly to the corner of the polygon.

Therefore, we are interested in (online) approximations of the optimal
search path. Note that both in the online and in the offline setting the loca-
tion of the target point is unknown. In the offline setting, the environment
is known in advance to the agent; this information is not provided to an
online searcher.

It turns out that there is a close relation between exploration—more pre-
cisely depth-restricted exploration—and searching; that is, there is a strategy
for approximating the optimal search path up to a constant factor for a given
setting, if there is a constant-competitive, depth-restricted exploration algo-
rithm in this setting, see Section 4.2. For online settings fulfilling a certain
condition, it can even be shown that there is an approximation if and only
if there is such an exploration algorithm, see Section 4.3. We call environ-
ments where no constant-factor online approximation of the optimal search
path exists—for short—hard-searchable environments.

Although our interest is mainly in polygons, we present an approximation
framework and a generalized lower bound that can also be applied to other
types of environments such as trees or graphs.

4.1 Definitions

We want to find a good search path in some given environment, E , of arbi-
trary type: a polygon, a tree, a graph, or a more special subclass of these
types such as m rays emanating from a common point. The only restriction
to the type of environments is that we require that there is a shortest path
from every point, p, in E back to the start point, s, that is of the same length
as a shortest path from s to p;3 that is,

∀p ∈ E : | sp(s, p)| = | sp(p, s)| .

In most cases, we want to search the whole environment, but there are
special kinds of search problems where we know that the goal may be hidden
only in some parts of the scene. Therefore, let the goal set G ⊆ E denote
the part of the environment where the goal may be located. For example, if
we search in a graph, G = (V,E), the goal may be located anywhere in the

2That is, the incoming angle is equal to the outgoing angle, see Figure 4.3.
3This condition excludes directed graphs, but this is no severe restriction, because there

is no search path approximation with a constant factor for directed graphs, see [59].

110 Chapter 4 Optimal Search Paths

graph; we call this setting geometric search and set G := V ∪E. In contrary,
we may consider a vertex search, where the goal is restricted to be hidden in
a vertex; in this case, we set G := V . Thus, we have to inspect all potential
goal locations in G. We require—as usual—that the distance to the goal is
at least 1. Otherwise, no search strategy is able to achieve a competitive
factor.4

The searcher can either be blind (i. e., it can sense only its very close
neighborhood) or it can have vision; that is, it can see objects far away from
its current position, if the line of sight is not blocked by an obstacle. We
assume that the searcher is equipped with enough memory to store a map of
its environment, and its movements, sensors, map making, and localization
is error-free.

sp(p)

p

s

π

q

Figure 4.2: A search path, π, inside a polygon. Moving along π, the searcher sees
p for the first time from q = pπ. The dashed path shows the shortest path from s
to the goal p.

We use the following notations: Given a start point, s ∈ E , let π be a
path in the environment E starting in s. For a given point q ∈ π let π(q)
denote the part of π from s to q. For an arbitrary point p ∈ E let sp(p)
denote a shortest path from s to p in the given environment, and pπ denote
the point q ∈ π from which a searcher following π sees p for the first time,
see Figure 4.2. The quality of a search path is measured by its search ratio:

Definition 4.1 Let E be an environment, G ⊆ E a goal set and s ∈ E a
point in the environment. A search path, π, with start point s is a path that
starts in s and from which every goal position in G can be seen. The search
ratio, sr(π), is defined as

sr(π) := max
p∈G

|π(pπ)| + |pπp|
| sp(p)| .

4Alternatively, we can assume that the cost in the start situation is subsumed by an
additive constant in the definition of the competitive factor, see Definition 1.1.

4.1 Definitions 111

An optimal search path, πopt, is a search path with a minimum search
ratio among all possible paths in the environment. We denote the optimal
search ratio by sropt; that is, sropt := sr(πopt).

In other words, we compare the path walked by a searcher to the shortest
path, and take the worst ratio among all possible targets as the search ratio
of our search path.

For blind agents, p = pπ holds for every p ∈ E ; therefore, the search ratio
can be computed as

sr(π) := max
p∈G

|π(p)|
| sp(p)| .

The optimal search path seems hard to compute for certain types of
environments, so we are interested in finding good approximations for the
optimal search path in offline and online scenarios. We say that a strategy,
S, computes a C-approximation of the optimal search path, if there are
constants C ≥ 1 and A ≥ 0, so that sr(πS) ≤ C · sropt + A holds for every
path πS computed by S.

Remark that this way of measuring performance is one step beyond com-
petitivity. Although the definitions of the search ratio and the competitive
factor are quite similar, the concepts are completely different. We no longer
give the worst-case ratio between an online solution and the optimal path.
Instead, we compare the worst-case ratio of an online solution to the best
possible worst-case ratio; in other words, we deal with a ratio of ratios in
online settings. Thus, a strategy that approximates the optimal search path
up to a constant factor can still be arbitrarily bad in the competitive frame-
work.

In the following, we want to use existing exploration algorithms to ap-
proximate the optimal search path. For convenience, we assume that all
exploration algorithms always return to the start point. Let |A| denote the
length of the path generated by an arbitrary algorithm A.

Definition 4.2 Let Expl be an—online or offline—algorithm for the explo-
ration of environments of the given type. Expl is called depth restrictable,
if for every d ≥ 1 it is possible to modify the algorithm Expl to an al-
gorithm Expl(d) that explores the environment only up to the depth d.
That is, the algorithm inspects5 at least all points of distance ≤ d—and
maybe some more—before it returns to the start point. Let Explopt(d) de-
note the corresponding optimal exploration. If there are constants β > 0

5A blind agent has to visit the points, a searcher with vision has to “see” them. We
use the term inspect to summarize these cases.

112 Chapter 4 Optimal Search Paths

and Cβ ≥ 1 so that, for every d ≥ 1, Expl(d) is Cβ-competitive with respect
to Explopt(β · d)—that is,

|Expl(d)| ≤ Cβ · |Explopt(β · d)| (4.1)

holds for every environment of the given type—, Expl is called Cβ-depth
restrictable.

Remark that we compare Expl(d) to an optimal solution that explores
the environment not only up to d, but up to β · d, in contrary to the usual
competitive framework. Of course, we prefer depth-restrictable exploration
algorithms with β = 1, but, unfortunately, there are cases where we cannot
restrict Expl to the depth d, because there may be useful shortcuts outside
this exploration depth. Even worse, in an online setting it may be impossi-
ble to determine which parts of the environment are inside the exploration
depth, so we may explore too much of the environment. Thus, it may be
easier to find appropriate exploration algorithms for β > 1. For example,
there is an exploration algorithm for graphs by Duncan et al. [49] that is
depth restrictable with β = 1 + α and Cβ = 4 + 8

α
for α > 0, see Fleischer

et al. [59].

4.2 Approximating the Optimal Search Path

We are interested in adequate approximations to the optimal search path,
because the optimal search path is hard or even impossible to compute, or
the searcher does not know its environment in advance, and, thus, has to
approximate the optimal search path online. Of course, a good approxima-
tion keeps the approximation factor as small as possible. We give a general
approximation framework, and apply this framework to simple polygons.

4.2.1 An Approximation Framework

In this section, we assume that there exists an online or offline Cβ-depth-
restrictable exploration algorithm, Expl, for the given environment. We use
Expl to approximate the optimal search path.

Theorem 4.3 Let Expl be a Cβ-depth-restrictable exploration algorithm
for a blind agent. Using Expl, we can compute a 4βCβ-approximation of the
optimal search path.

Proof. We use the well-known doubling paradigm, see [64, 11] and Sec-
tion 3.2, and successively apply our given exploration strategy with increas-
ing exploration depth; that is, we successively run Expl(2i), each iteration
starting and ending in the start point, s.

4.2 Approximating the Optimal Search Path 113

Now, consider a single iteration of the doubling strategy with search
depth d ≥ 1. Even the optimal search path, πopt, has to inspect every
possible goal position whose distance from s is at most d. Let pd denote
the point with a distance not greater than d that the robot inspects at last
while moving along πopt. The search ratio of πopt cannot be smaller than
the search ratio in pd; this yields

sropt ≥
|πopt(pd)|

d
. (4.2)

Moving on the optimal search path, πopt, from s to pd, the searcher in-
spects all points with distance ≤ d. Therefore, πopt is also a depth-restricted
exploration path. However, πopt cannot be shorter than |Explopt(d)|; other-
wise, Explopt(d) would not be a shortest exploration tour. Thus, we have

|Explopt(d)| ≤ |πopt(pd)| + d . (4.3)

The addend d is necessary, because Explopt(d) returns to s whereas πopt(pd)
ends in pd. The searcher is located in pd while exploring this point because
it has no vision. Thus, we can account | sp(pd, s)| ≤ d for the path back to
s. From Equation 4.2 and Equation 4.3 we get

|Explopt(d)| ≤ d · (sropt + 1) . (4.4)

Now, our strategy successively applies Expl(d) with increasing explo-
ration depth d = 21, 22, 23, Similar to the search for a point on a line or
on m rays, the worst case for the search ratio of our strategy is achieved if
we slightly miss our target in the iteration with exploration depth d = 2j ,
and inspect almost every point with distance 2j+1; that is, the distance to
the goal is 2j + ε for a small ε > 0. Altogether, we can bound the search
ratio of our approximation strategy by

sr(π) ≤
∑j+1

i=1 |Expl(2i)|
2j + ε

.

Expl is Cβ-depth restrictable, so we can apply Equation 4.1

sr(π) ≤ Cβ

2j
·

j+1
∑

i=1

|Explopt(β · 2i)| .

Finally, with Equation 4.4 we get

sr(π) ≤ Cβ

2j
·

j+1
∑

i=1

β · 2i · (sropt + 1)

≤ βCβ ·
(

2j+2 − 2

2j

)

· (sropt + 1)

≤ 4β Cβ · (sropt + 1)

114 Chapter 4 Optimal Search Paths

Thus, our doubling strategy approximates the optimal search ratio sropt

up to a factor of 4βCβ . 2

A blind searcher has to visit all goal points in a distance ≤ d, and—
particularly—pd, so sp(pd) ≤ d holds. Unfortunately, we cannot guarantee
this for search agents with unlimited vision, because such searchers may see
the last point with distance ≤ d from somewhere else. We know only that the
path back to s is at most as long as the path that the searcher has traveled
so far in this iteration; that is, | sp(pd)| ≤ |πopt(pd)| holds. Analogously to
Equation 4.3 we conclude for a searcher with vision:

|Explopt(d)| ≤ 2 · |πopt(pd)| , (4.5)

and with Equation 4.2 we get—compare to Equation 4.4—

|Explopt(d)| ≤ 2d · sropt . (4.6)

The worst case is achieved for the same setting as described earlier. In
contrast to a blind searcher, a searcher with vision has to move to the goal
after it is found; thus, the search ratio of our approximation is bounded by

sr(π) ≤ 2j + ε +
∑j+1

i=1 |Expl(2i)|
2j + ε

≤ 1 +
Cβ

2j
·

j+1
∑

i=1

|Explopt(β · 2i)|

≤ 1 +
2Cβ

2j
·

j+1
∑

i=1

β2i sropt ≤ 8βCβ · sropt + 1

Altogether, we have

Theorem 4.4 Let Expl be a Cβ-depth-restrictable exploration algorithm for
an agent with vision. Using Expl, we can compute an 8βCβ-approximation
of the optimal search path.

Note that a searcher with limited vision sees pd from a distance that is
bounded by the range of the vision sensor. Let r denote the maximal vision
range, then Equation 4.3 reads

|Explopt(d)| ≤ |πopt(pd)| + d + r .

Thus, such a searcher is able to achieve a ratio of 4βCβ · (sropt + 1) + kr,
where k denotes the number of iterations and depends on the size of E .

4.2 Approximating the Optimal Search Path 115

4.2.2 Searching Simple Polygons

In the previous section, we have seen how to approximate the optimal search
path up to a constant factor. The deciding task is to find an appropriate
exploration strategy for the given environment that can be turned into a
Cβ-depth-restrictable exploration strategy. Now, we apply our framework
to simple polygons. We assume that the searcher is equipped with ideal, un-
limited vision; that is, the full visibility polygon with respect to the searchers
current position is provided. Note that such a searcher is able to inspect
potential goal points from a position far away from this point.

s

c1

c3

c6

c5

c2

c4

SWR

α

α

Figure 4.3: A polygon with visibility cuts (dotted), essential cuts (dashed) and
Shortest Watchman Route (SWR). The SWR visits the essential cuts using the law
of reflections, see c1 for an example.

The visibility cuts play a crucial role in the exploration of simple poly-
gons. Consider a reflex vertex, v, of P . We extend both edges incident to v
inside P until they hit the boundary of P . Only one of these two extensions
is interesting for the visibility; namely, the one that blocks the vision with
respect to the start point, s. We call this extension a visibility cut of P with
respect to s—or cut for short.6 A cut, c1, dominates another cut, c2, if every
path from s to c1 visits c2. Cuts that are not dominated by another cut are
called essential cuts. Dominated cuts are—so to speak—explored by the
way, so we can focus on the essential cuts. Obviously, an exploration path
has to visit each essential cut. Figure 4.3 shows an example for a polygon
with its visibility cuts (dotted) and essential cuts (dashed). c3 and c5 are
not essential, because every path to c4 intersects them.

The optimal offline exploration path is also known as the shortest watch-
man route, and was first considered by Chin and Ntafos [32]. They gave an
O(n)-algorithm for shortest watchman routes in rectilinear simple polygons

6This definition follows the definition in [84]. Note that there are other definitions
for cuts and visibility cuts, see e. g. [33]. However, the definitions of essential cuts are—
essentially—the same.

116 Chapter 4 Optimal Search Paths

with n vertices. Dror et al. [46] presented an O(n3 log n)-algorithm for short-
est watchman routes in arbitrary simple polygons. An important property
of the SWR is that essential cuts are visited using the law of reflection; that
is, the angle between the cut and the path segment on which the agent ap-
proaches the cut is equal to the angle between the cut and the path segment
on which the agent leaves the cut, see Figure 4.3.

π

SWR

s

Figure 4.4: Greedy-online exploration and SWR (dashed) in a rectilinear polygon.

To apply Theorem 4.4 we need a Cβ-depth-restrictable exploration algo-
rithm for simple polygons. More precisely, in a single iteration of the dou-
bling strategy we want to see—at least—all points with a distance smaller
than or equal to d from the start point. Let P (d) denote all these points
(i. e., P (d) := { p ∈ P | sp(s, p) ≤ d }) and SWR(d) the optimal exploration
tour for P (d).

Two exploration algorithms for simple polygons are known. The algo-
rithm greedy online (GO) by Deng, Kameda and Papadimitriou [43] explores
a rectilinear polygon by moving successively to the cut of the next reflex ver-
tex in clockwise order along the boundary of the polygon until the whole
polygon is explored, see Figure 4.4. Deng et al. showed that GO is optimal
with respect to the SWR in the Manhatten metric (L1-metric) and

√
2-

competitive with respect to the SWR in the Euclidean metric (L2-metric).
With this algorithm, we can approximate an optimal search path:

Theorem 4.5 There is an online 8
√

2-approximation of the optimal search
path in rectilinear simple polygons for searchers with ideal vision. Further,
there is a polynomial time offline 8-approximation.

Proof. It is easy to see that GO is depth restrictable. We simply ignore
vertices farther away than d. Because the polygon is simple and rectilinear,
both GO(d) and SWR(d) never exceed P (d). Thus, GO(d) ≤

√
2 · SWR(d)

holds; that is, GO is depth restrictable with β = 1 and Cβ =
√

2. With
Theorem 4.4 we get our result.

4.2 Approximating the Optimal Search Path 117

In the offline setting, we can successively apply the algorithm by Chin
and Ntafos to P (d). This algorithm yields an optimal exploration path
(i. e., β = Cβ = 1), so we get an 8-approximation. The running time of this
approximation depends on the number of iterations in the doubling strategy,
and, in turn, by the distance to the farthest cut. To restrict the number
of iterations we simply skip an iteration with exploration depth d = 2i,
if there is no (reflex) vertex that would be discovered in this exploration.
Thus, we explore at least one new reflex vertex in every iteration and get
a maximal number of k iterations for a polygon with n vertices and k < n
reflex vertices. Altogether, we achieve a polynomial running time. 2

(i) (ii)

s

SWR

π

Figure 4.5: (i) A corner: A set of essential cuts that intersect each other, (ii) a
greedy exploration of reflex vertices is not applicable in nonrectilinear polygons
[84].

The correctness proof for GO uses some properties of rectilinear poly-
gons. First, the cut of an unexplored vertex is known in advance, and at
most two cuts can mutually intersect. Further, the shortest watchman route
visits the cuts in the same order as they appear on the polygon’s boundary.
These properties do no hold in nonrectilinear polygons. Figure 4.5(i) shows a
corner situation, in which more than two essential cuts intersect each other.
In the example shown in Figure 4.5(ii), the greedy exploration—visiting the
cuts in same order as the corresponding vertices appear on the polygon’s
boundary—does not achieve a competitive factor [84].

Nonrectilinear simple polygons can be explored with the 26.5-competi-
tive algorithm PolyExplore by Hoffmann, Icking, Klein and Kriegel, see [84].
We give only a very brief insight into the functionality of PolyExplore, and
refer the reader to [84] for a more comprehensive description. PolyExplore

118 Chapter 4 Optimal Search Paths

alternately explores groups of right and left reflex vertices7 to avoid the
problem shown in Figure 4.5(ii). The start point of the exploration of a
group of vertices is called stage point; the initial stage point is s.

arc(`1, r2)

r1

r2

r3

e7

e8

e3

arc(r2, r3)

s

e5

e4

e6

`1

e2

e1

arc(s, r1)

arc(s, r2)

arc(s, r2)

arc(r1, r3)

arc(r1, r2)

Figure 4.6: Exploring a right reflex vertex with PolyExplore.

Moving straight towards the vertices does not achieve a competitive fac-
tor, see Icking [86] or Icking et al. [95]; therefore, the robot explores a vertex
on a circular arc. The strategy maintains a list, the target list, of right ver-
tices that have been seen, but are not fully explored, and whose shortest
paths from the current stage point makes only right turns. The target list is
sorted in clockwise order along the polygon’s boundary. The strategy always
aims to reach the cut of the first element in the target list. Figure 4.6 shows
an example for the exploration of a right vertex: The robot starts in s and
tries to reach r1 on a circular arc. In e1 another right vertex, r2, becomes
visible. Because r2 is now the first element in the target list, the robot
now follows the arc between s and the new vertex (arc(s, r2)). There are
some events that may occur during a walk on an arc. First, if the sight to
the origin of the current arc gets lost, the robots chooses the sight-blocking
vertex as new origin. In e4 the sight to s gets lost and the robot follows
arc(r1, r2). Further, if the sight to the current target vertex gets lost (see
e2), the robot moves a straight line towards the target, until it reaches the
vertex that has hidden the target (in our case `1). If the robot reaches the
polygon’s boundary (see e7), it follows a straight line along the boundary
until it can continue to follow the current arc.

The preceding procedure explores one essential cut. A group of right
vertices may have more than one essential cut, see Figure 4.5(i), so the
procedure is called successively until the target list is empty. While a group

7A right (left) reflex vertex touches the shortest path tree—the tree of all shortest paths
inside the polygon from s to every other vertex—from the right (left, respectively) [84].

4.2 Approximating the Optimal Search Path 119

of vertices is explored, the algorithm maintains a second list of detected, but
unexplored vertices that are not inserted into the target list. The vertices
in this list are candidates for subsequent stage points.

We can modify PolyExplore to a depth-restricted strategy PolyExplore(d)
by ignoring vertices whose distance from the start is greater than d. Note
that both PolyExplore(d) and SWR(d) may exceed P (d) as shown in Fig-
ure 4.7. In (i) PolyExplore(d) explores successively the vertices vr and v`,
but SWR(d) visits the cuts outside P (d). In (ii) PolyExplore(d) starts to
explore r1. In e1 we discover r2 and continue moving on arc(s, r2), until
r2 is fully explored in e2. Now, we move on arc(e2, r3). This movement is
interrupted in e3, because the sight to r3 gets lost, and leaves P (d) in e4.

(ii)(i)

(1)(2) r2

r3

vrv`

P (d)

P ′(d)

s

SWR

s

P (d)

r1

e1

e3

e2

SWR

e4

Figure 4.7: Both (i) SWR(d) and (ii) PolyExplore(d) may exceed P (d) (dark gray),
but both of them are in P ′(d) (light gray).

However, we can enlarge P (d) to P ′(d) by a convex region, such that the
resulting polygon contains PolyExplore(d) as well as SWR(d), see Figure 4.7.
Because we add no reflex vertices, we do not change the paths of SWR(d)
and PolyExplore(d), even if the extensions for different parts of P (d) overlap.
Thus, the analysis of PolyExplore by Hoffmann et al. still holds in P ′(d).
Therefore, we have

PolyExplore(d) ≤ 26.5 · SWR(d) , (4.7)

and PolyExplore is depth restrictable with β = 1 and Cβ = 26.5.

Theorem 4.6 There is an online 212-approximation of the optimal search
path in simple polygons for searchers with ideal vision. Further, there is a
polynomial time offline 8-approximation.

120 Chapter 4 Optimal Search Paths

Proof. The factor in the online setting follows from Equation 4.7 and
Theorem 4.4. In the offline setting we can—analogously to the rectilinear
case—successively apply the algorithm by Dror et al. [46] to P (d) and get
an 8-approximation. The polynomial running time follows from the same
conclusions as in Theorem 4.5. 2

4.3 Hard-Searchable Environments

In the previous section, we have seen a general framework for (online) ap-
proximations of the optimal search path in environments that are explorable
with a competitive, depth-restrictable algorithm.

Now, it is obvious to ask what we can do if there is no constant-compe-
titive online exploration for the given type of environment. Can we find
another way to approximate the optimal search path, or can we show that
no approximation exists? We call the latter environments hard searchable. In
the following, we show that polygons with holes are in fact hard searchable.
Afterward, we generalize this approach to environments that fulfill a certain
condition.

4.3.1 Polygons with Holes

It was shown by Albers et al. [5] that there is no exploration algorithm
with a constant competitive factor for polygons with (rectilinear) holes by
constructing a scene as shown in the upper half of Figure 4.8. This scene
consists of k thin rectangles of width 2k (spike rectangles) and k− 1 rectan-
gles of width 1 (base rectangles), for k ≥ 2. There is a small space between
two rectangles that allows the robot to pass, but blocks the sight to the area
behind a base rectangle. Behind one of the base rectangles we find the same,
but scaled construction (recursive subproblem). For the time being, we do
not define whether the base rectangles of the subproblem are located on the
left side or on the right side. Now, any exploration strategy starting in s
has to decide, whether it walks upwards and inspects the base rectangles
from the left side, or walks to the right and upwards, inspecting the base
rectangles from the right side. In the first case, we fix the base rectangles
of the subproblem on the left side, in the second case on the right side. Al-
together, the robot’s path length is at least k for a single level. We have k
subproblems, so |πA| ∈ Ω(k2) holds for every online strategy A. On the other
hand, the optimal strategy knows the location of the recursive subproblem
in advance and directly enters it. The robot leaves the subproblem on the
opposite side and is now able to explore the parts behind the remaining base
rectangles. Thus, the optimal strategy gets by with a path of length O(k).
For k = b√nc we get a bound lower of Ω(

√
n).

4.3 Hard-Searchable Environments 121

k

2k

recursive subproblem

πopt

k

s

s′

Figure 4.8: Lower bound construction for approximating the optimal search path
in polygons with holes (start point s′). The upper half shows the lower bound for
the exploration task by Albers et al. (start point s), and the optimal exploration
path πopt.

Theorem 4.7 There is no online C-approximation of the optimal search
path for an agent with vision searching in polygons with holes. Further, there
is an exponential-time offline 8-approximation in this setting.

Proof. Unfortunately, in the lower bound construction of Albers et al.
the optimal exploration paths yields already a bad search ratio. Thus, we
enlarge the setting by a thin corridor of length k that leads to the former
start point, s. Our new start point, s′, is located at the end of the new
corridor, see Figure 4.8. Now, any point that is not visible from s′ is at
least k steps away from s′; that is, sp(s′, p) ≥ k holds for such a point p.
The optimal exploration path is still never longer than C · k for a constant
C; thus, the optimal exploration path is a C-approximation of the optimal
search path. In the new scene, every online exploration algorithm is forced
to a path of length in Ω(k2). Because every online approximation of the
optimal search path is also an online exploration algorithm, there are points
that are discovered after walking a path length in Ω(k2), although their
distance to s′ is in O(k). Thus, no online approximation is able to achieve
a constant approximation factor.

Finding a shortest watchman route in polygons with holes is NP-hard,
see Chin and Ntafos [32]. But we can enumerate all permutations of the
essential cuts, compute the watchman route that visits the cuts in this order,
and choose the route with minimal length. With Theorem 4.4 we get an 8-
approximation, although with exponential running time. 2

122 Chapter 4 Optimal Search Paths

4.3.2 Arbitrary Hard Searchable Environments

We have seen that for environments of a given type there exists an ap-
proximation for the optimal search path, if there exists a depth-restrictable,
competitive exploration strategy. Further, we have seen that there is no
approximation for the optimal search path up to a constant factor in poly-
gons with holes. Now, we want to generalize the latter result; that is, we
want to show that—under a certain condition—there is no approximation
up to a constant factor, if there is no competitive exploration strategy for
environments of the given type.

Usually, the nonexistence of competitive exploration strategies is shown
by giving a lower bound—a scenario, in which every exploration strategy
is forced to walk a path whose length exceeds the length of the optimal
exploration path by more than a constant factor. To transfer such a result
to search path approximations, we require that the scenario can be extended
around the start point, such that the start point moves further away from
the original scenario. We used this technique in the previous section.

Definition 4.8 Let E be an environment of arbitrary type, and s be a start
point in E . We call E s-extendable, if we can enlarge E locally around the
start point; that is, it is possible to choose a new start point, s′, outside E ,
and enlarge E to E ′, such that s′ is contained in E ′ and every path from s′

to a point in E passes s.

Theorem 4.9 If there is no constant-competitive online exploration algo-
rithm for environments of a given type, and the corresponding lower bound
is s-extendable, then there is no competitive online approximation of the
optimal search path.

Proof. Let S, |S| = n, be the lower bound construction, Explopt denote the
optimal exploration algorithm, and f(n) be a function, so that |Explopt| ∈
O(f(n)) holds. There is no competitive online exploration, so |ExplA| ∈
ω(f(n)) holds for every online algorithm A.8

Because any online approximation of the optimal search path is also an
online exploration strategy, any online approximation strategy in S can be
forced to detect the last point, p, after traversing a path with a length in
ω(f(n)).

We construct a lower bound, S ′, for the online approximation of the
search path by placing a new start point, s′, outside S with distance f(n)
and connecting it to the former start point s. In S ′ any online search strategy
can also be forced to detect the last point, p, after moving a path in ω(f(n)),
whereas the distance from p to s′ is still in O(f(n)). Therefore, the search

8Whereas Ω(g) denotes the class of functions growing at least as fast as g, ω(g) denotes
the class of functions that grow faster than g, see e. g. [187].

4.4 Summary 123

ratio of any online search path in S ′ is in Ω(n). On the other hand, the
optimal exploration path in S ′ is still in O(f(n)), yielding—of course—a
constant optimal search ratio. Altogether, no constant-competitive online
approximation exists. 2

4.4 Summary

We have seen that there are environments where no online search strategy
can achieve a constant competitive factor. Therefore, we use the search
ratio as a parameter of a given environment that gives a measure for the
environment’s searchability. A search strategy is considered “good”, if it
achieves a good approximation of the optimal search ratio; that is, the search
ratio of an online strategy is at most a constant factor worse than the optimal
search ratio.

We showed that we can use Cβ-depth-restrictable exploration strategies—
exploration strategies that can be modified to explore the environment only
up to a certain depth while they are still competitive—, to approximate the
optimal search path by successively applying the exploration with exponen-
tially increasing exploration depths. For blind agents we showed that there
are 4βCβ-approximations, for searchers with vision 8βCβ-approximations,
where β and Cβ are parameters that depend on the modifications to turn
an exploration algorithm into a depth-restricted exploration—provided that
the environments, E , fulfills ∀p ∈ E : | sp(s, p)| = | sp(p, s)|. We applied our
results to simple polygons; applications to trees and graphs can be found in
Fleischer et al. [59].

Further, we showed that there is no C-approximation of the optimal
search path for polygons with holes. The main idea for this proof—enlarging
the environment close to the start point—can be generalized for environ-
ments that fulfill a certain condition we called s-extendable.

If we assume that for every type of environment, for which a constant-
competitive exploration strategy is known, there is also a Cβ-depth-restrict-
able exploration strategy, and for every lower bound there is a s-extendable
lower bound, we can state the following

Conjecture 4.10 For a given type of environments that fulfills ∀p ∈ E :
| sp(s, p)| = | sp(p, s)|, there is a constant-competitive online approximation
of the optimal search path if and only if there exists a constant-competitive
online exploration for environments of this type.

Proving this conjecture would show a close relation between exploration
and searching: We are able to approximate the optimal search path—with
other words, we can find a good search strategy—if there is a constant-
competitive exploration strategy. And, vice versa, we have no chance to find
a good search strategy, if no constant-competitive exploration is possible.

124 Chapter 4 Optimal Search Paths

Chapter 5

Conclusions

In this work, we discussed several aspects of exploration and searching. We
already gave more detailed summaries and pointed out some open problems
in Section 2.4.6 (page 69), Section 3.3 (page 104), and Section 4.4. Thus,
we review only some items concerning the modeling of robot motion tasks
in this chapter.

Environment
In Chapter 2, we studied the case of a simple robot moving around a simple
type of environment. This view led to clear and easy-to-implement algo-
rithms. Nevertheless, the considered models are not too simple and pow-
erful enough to model certain “real-world” problems like lawn-mowing or
cleaning.

Robot
In practice, there are no error-free robots. Every type has more or less big
errors in driving and sensor readings. Thus, we are interested in giving per-
formance results that consider possible errors, or even design robot models
and strategies that take the error into account. In Chapter 3 we studied two
examples of robots with errors. For the Pledge algorithm we derived in Sec-
tion 3.1 a set of sufficient conditions that guarantee a successful execution.
In Section 3.2 we gave upper bounds for the error of an robot applying the
usual doubling strategy, fi = 2i. Moreover, we were able to design strate-
gies for searching on the line and on m rays that take the error into account
and achieve an optimal competitive factor. These results may justify fur-
ther work on incorporating error models into theoretically well-understood
algorithms that are more complicated and more applicable in practice.

126 Chapter 5 Conclusions

Costs
The competitive framework—see Definition 1.1—is a commonly used and
normally convenient framework for evaluating online algorithms. Neverthe-
less, we have seen two examples where the competitive analysis is not ap-
propriate. In Section 2.1 we showed a lower bound of 2 for the exploration
of grid polygons with holes. The simple DFS strategy already achieves this
factor; thus, DFS is an optimal strategy in the competitive framework. A
more rigorous analysis showed that DFS is highly improvable, because it
does not take advantage of larger areas in the polygon. Analyzing the prob-
lem in a cost model similar to the excess distance ratio—see the paragraph
on costs in Chapter 1—led to an algorithm with a better performance than
DFS. In this case the competitive framework is quasi not tight enough.

On the other hand, for the search problems we discussed in Chapter 4
the competitive framework is too tight, because no search strategy was able
to achieve a constant competitive factor. Thus, we had to find another
method to compare search strategies, which led to the concept of search
ratios. Approximating the optimal search ratio introduced a kind of “meta-
competitity”, where we compare two ratios instead of two path lengths.
Further, the search ratio reveals a closer relation between exploration and
search.

List of Figures

1.1 A mobile robot (Activmedia Pioneer P2-AT) equipped with
a laser scanner (Sick). 2

1.2 Several types of polygons: (i) polygon with hole, (ii) simple
polygon, (iii) rectilinear, simple polygon, (iv) grid polygon. . 3

1.3 (i) The visibility polygon (shaded) of P with respect to the
robot’s current position, R, (ii) limited visibility polygon. . . 4

2.1 (i) An example exploration tour, (ii) a shortest TSP tour for
the same polygon. The black cells show obstacles inside the
polygon. 14

2.2 (i) Polygon with 23 cells, 38 edges and one(!) hole (black
cells), (ii) the robot can determine which of the 4 adjacent
cells are free, and enter an adjacent free cell. 15

2.3 The perimeter, E, is used to distinguish between thin and
thick environments. 16

2.4 A lower bound of 2 for the exploration of grid polygons. . . . 17

2.5 A lower bound for the exploration of simple polygons. The
dashed lines show the optimal solution. 18

2.6 DFS is not the best possible strategy. 19

2.7 First improvement to DFS: Return directly to those cells that
still have unexplored neighbors. 20

2.8 Second improvement to DFS: Detect polygon splits. 21

2.9 Straightforward strategies are not better than SmartDFS. . . 22

2.10 The 2-offset (shaded) of a grid polygon P 24

2.11 A decomposition of P at the split cell c and its handling in
SmartDFS. 25

2.12 Several types of components. 26

2.13 Switching the current layer. 27

2.14 No component of type III exists. 28

2.15 The component K2 is of type I. The square Q may exceed P . 29

2.16 The order of components is not necessarily optimal. 30

2.17 For polygons without narrow passages or split cells in the first
layer, the last explored cell, c′, lies in the 1-offset, P ′ (shaded). 33

128 List of Figures

2.18 In a corridor of width 3 and even length, S(P) = 4
3 SOpt(P)−2

holds. 34

2.19 Three cases of split cells, (i) component of type II, (ii) and
(iii) component of type I. 35

2.20 (i) Detecting a split cell, (ii) and (iii) a polygon split occurs
in layer 1. 36

2.21 In an environment with obstacles, the robot may detect a
split on a position far away from the splitcell, (i) c was a split
cell, (ii) c was no split cell. 37

2.22 Example of an exploration tour produced by CellExplore (Screen-
shot using [77]; the white cells are holes, dark gray cells are
reserved). 38

2.23 Decomposing a polygon. The shaded part shows the reserved
cells. 40

2.24 Decomposing a polygon. 4 denotes the start cell and the
initial direction. ∆C,∆E and ∆S denote the differences in
the number of cells, edges, and steps, respectively. G denotes
the balance. 41

2.25 Handling of division cells. 42

2.26 Decomposing a step to the right into several forward steps. . 43

2.27 Configurations that are steps to the left instead of forward
steps. 45

2.28 Another class of left turns. 46

2.29 Some possible cases of polygon splits. 47

2.30 Cell configurations for forward steps. 48

2.31 Possible configurations for steps to the left (1). 49

2.32 Possible configurations for steps to the left (2). 50

2.33 Possible configurations for steps to the left (3). 51

2.34 Possible configurations for steps to the left (4). 52

2.35 Corridors of odd width. 53

2.36 Contributions to Wcw by (i) the outer boundary, (ii) inner
boundaries. 54

2.37 Reflex vertices pi and the corresponding squares Qi. Wcw =
q′1 + q′3 = 8,Wccw = q′4 = 2. 54

2.38 Examples for the definition of Wcw: (i) A polygon with C =
193, E

2 = 78,H = 3,Wcw = 6, S = 284 (the bound for S is
exactly achieved), (ii) the start cell contributes to Wcw, too
(C = 46, E

2 = 23,H = 2,Wcw = 2, S = 74). 55

2.39 Left turn followed by (i) a right turn and (ii) a reduction. . . 56

2.40 (i) A reduction follows a left turn, (ii) the left turn causes a
polygon split, (iii) no forward steps between the left turn and
the reduction (d = 0). 57

2.41 If a and b are free cells we gain 2. (i) d = 1, (ii) d ≥ 1. 57

List of Figures 129

2.42 Polygon with C = 34, E
2 = 17,H = 1,Wcw = 2, S = 54 =

C + 1
2E + 3H + Wcw − 2. 58

2.43 A polygon with C = 69, E
2 = 52,H = 1,Wcw = 2, S = 124 =

C + 1
2E + 3H + Wcw − 2. The return path in this polygon

cannot be shortened. 58

2.44 (i) The model of Gabriely and Rimon: the robot R, the tool
W , cells, and 2D-cells, (ii) avoiding turns in Scan-STC. . . . 59

2.45 Cubical environments, (i) C = 2, F = 10, E = 16, (ii) C =
17, F = 46, E = 39. 60

2.46 Exploring a cubical environment with SmartDFS. Split cells
are highlighted. 62

2.47 (i) Without an explicit step to the south, a robot using SmartDFS-
3D starting in s does not explore the cell c, (ii) a CellExplore-
like strategy in 3D has to ensure that c is visited (the shaded
cells are reserved cells), (iii) a CellExplore-like strategy in 3D
may perform as badly as DFS. 62

2.48 The GridRobot applet and the option panel for CellExplore. . 64

2.49 (i) CellExplore vs. (ii) the version use reserved cells always. . 65

2.50 The version use reserved cells always exceeds the bound from
Theorem 2.18 by one step. C = 34, E

2 = 19,H = 2,Wcw =
0, S = 58. 65

2.51 (i) Example: the robot ⊕ has to move to a to allow the robot
⊗ a movement to 3, (ii) dk

2e+1 robots are necessary to reach
3. 67

2.52 (i) dk
2e+ 1 robots are needed to reach t, (ii) t can be reached

with O(n + m) steps using 3 robots. 68

3.1 The path of the Pledge algorithm. 73

3.2 Small errors along each boundary can sum up to a cycle. . . . 75

3.3 Missing a leave point can lead to a cycle. 76

3.4 The difference between (i) a crossing and (ii) a touch at t2. . 77

3.5 (i) A counterclockwise turn and a crossing, (ii) no crossing. . 77

3.6 (i) A clockwise turn and a crossing, (ii) no crossing. 78

3.7 A curve that hits an edge twice. 79

3.8 (i) Angle counting for an orthogonal polygon, (ii) pseudo-
orthogonal polygon and divergence δ. 82

3.9 Maximal deviation between the outer measured angle (γ) and
the outer nominal value (dashed) for a convex and a reflex
vertex. 83

3.10 The robot hits a horizontal edge (i) error-free case, (ii) small
absolute value for γ, (iii) large absolute value for γ. 83

130 List of Figures

3.11 The ith iteration consists of two separate movements, `+
i and

`−i . Both may be of different length, causing a drift. The
vertical path segments are to highlight the single iterations,
the robot moves only on horizontal segments. 86

3.12 In the worst case, the start point of every iteration drifts away
from the door. 87

3.13 An asymmetrical strategy can be turned into a symmetrical
strategy (dashed lines). 92

3.14 Searching on m rays. 101
3.15 Applying the Pledge algorithm to environments with one-way

roads does not work. 106

4.1 No search strategy achieves a competitive factor better than
Ω(n) [115]. 108

4.2 A search path, π, inside a polygon. Moving along π, the
searcher sees p for the first time from q = pπ. The dashed
path shows the shortest path from s to the goal p. 110

4.3 A polygon with visibility cuts (dotted), essential cuts (dashed)
and Shortest Watchman Route (SWR). The SWR visits the
essential cuts using the law of reflections, see c1 for an example.115

4.4 Greedy-online exploration and SWR (dashed) in a rectilinear
polygon. 116

4.5 (i) A corner: A set of essential cuts that intersect each other,
(ii) a greedy exploration of reflex vertices is not applicable in
nonrectilinear polygons [84]. 117

4.6 Exploring a right reflex vertex with PolyExplore. 118
4.7 Both (i) SWR(d) and (ii) PolyExplore(d) may exceed P (d)

(dark gray), but both of them are in P ′(d) (light gray). . . . 119
4.8 Lower bound construction for approximating the optimal search

path in polygons with holes (start point s′). The upper half
shows the lower bound for the exploration task by Albers
et al. (start point s), and the optimal exploration path πopt. . 121

Bibliography

[1] H. Abelson and A. A. diSessa. Turtle Geometry. MIT Press, Cam-
bridge, 1980.

[2] S. Abramowski and H. Müller. Geometrisches Modellieren. BI-
Wissenschaftsverlag, Mannheim, 1991.

[3] R. Ahlswede and I. Wegener. Suchprobleme. Teubner, Stuttgart, 1979.

[4] S. Albers and M. Henzinger. Exploring unknown environments. In
Proc. 12th Annu. ACM Sympos. Theory Comput., pages 416–425,
1997.

[5] S. Albers, K. Kursawe, and S. Schuierer. Exploring unknown environ-
ments with obstacles. Algorithmica, 32:123–143, 2002.

[6] S. Alpern and S. Gal. The Theory of Search Games and Rendezvous.
Kluwer Academic Publications, 2003.

[7] D. Angluin, J. Westbrook, and W. Zhu. Robot navigation with dis-
tance queries. Siam J. Comput., 30(1):110–144, 2000.

[8] E. M. Arkin, S. P. Fekete, and J. S. B. Mitchell. Approximation algo-
rithms for lawn mowing and milling. Comput. Geom. Theory Appl.,
17:25–50, 2000.

[9] S. Arora. Polynomial time approximation schemes for Euclidean TSP
and other geometric problems. In Proc. 37th Annu. IEEE Sympos.
Found. Comput. Sci., pages 2–11, 1996.

[10] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo.
Competitive algorithms for the on-line traveling salesman. In Proc.
4th Workshop Algorithms Data Struct., volume 955 of Lecture Notes
Comput. Sci., pages 206–217. Springer-Verlag, 1995.

[11] R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane.
Inform. Comput., 106:234–252, 1993.

132 Bibliography

[12] M. A. Batalin and G. S. Sukhatme. Coverage, exploration and de-
ployment by a mobile robot and communication network. In Proc.
Internat. Workshop Inform. Proc. Sensor Networks, pages 376–391,
2003.

[13] M. A. Batalin and G. S. Sukhatme. Efficient exploration without
localization. In Proc. IEEE Internat. Conf. Robot. Autom., 2003.

[14] A. Beck and D. J. Newman. Yet more on the linear search problem.
Israel Journal of Mathematics, 8:419–429, 1970.

[15] P. Berman. On-line searching and navigation. In A. Fiat and G. Woeg-
inger, editors, Competitive Analysis of Algorithms. Springer-Verlag,
1998.

[16] P. Berman, A. Blum, A. Fiat, H. Karloff, A. Rosen, and M. Saks.
Randomized robot navigation algorithms. In Proc. 7th ACM-SIAM
Sympos. Discrete Algorithms, pages 75–84, 1996.

[17] S. Bespamyatnikh. An O(n log n) algorithm for the zoo-keeper’s prob-
lem. Comput. Geom. Theory Appl., 24:63–74, 2003.

[18] M. Betke, R. L. Rivest, and M. Singh. Piecemeal learning of an un-
known environment. Machine Learning, 18(2–3):231–254, 1995.

[19] A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar
geometric terrain. SIAM J. Comput., 26(1):110–137, Feb. 1997.

[20] M. Blum and D. Kozen. On the power of the compass (or, why mazes
are easier to search than graphs). In Proc. 19th Annu. IEEE Sympos.
Found. Comput. Sci., pages 132–142, 1978.

[21] J. Borenstein and L. Feng. Umbmark: a benchmark test for measuring
odometry errors in mobile robots. Technical Report UM-MEAM-94-
22, University of Michigan, December 1994.

[22] J. Borenstein and L. Feng. Umbmark: A benchmark test for measuring
odometry errors in mobile robots. In Proc. 1995 SPIE Conf. Mobile
Robots, pages 113–124, 1995.

[23] A. Borodin and R. El-Yaniv. Online Computation and Competitive
Analysis. Cambridge University Press, Cambridge, UK, 1998.

[24] P. Bose, A. Lubiw, and J. I. Munro. Efficient visibility queries in
simple polygons. In Proc. 4th Canad. Conf. Comput. Geom., pages
23–28, 1992.

[25] J. Boyar and K. S. Larsen. The seat reservation problem. Algorithmica,
25:403–417, 1999.

Bibliography 133

[26] C. Bröcker and A. López-Ortiz. Position-independent street search-
ing. In Proc. 6th Workshop Algorithms Data Struct., volume 1663 of
Lecture Notes Comput. Sci., pages 241–252. Springer-Verlag, 1999.

[27] W. Burgard, F. Dellaert, D. Fox, and S. Thrun. Robust monte carlo
localization for mobile robots. Artif. Intell., 128:99–141, 2001.

[28] J. Byrne, R. Jarvis, S. Yuta, and A. Zelinsky. Planning paths of
complete coverage of an unstructured environment by a mobile robots.
In Internat. Conf. Adv. Robotics, pages 553–538, 1993.

[29] J. Canny and J. H. Reif. New lower bound techniques for robot mo-
tion planning problems. In Proc. 28th Annu. IEEE Sympos. Found.
Comput. Sci., pages 49–60, 1987.

[30] S. Carlsson and H. Jonsson. Computing a shortest watchman path in a
simple polygon in polynomial time. In Proc. 4th Workshop Algorithms
Data Struct., volume 955 of Lecture Notes Comput. Sci., pages 122–
134. Springer-Verlag, 1995.

[31] S. Carlsson, H. Jonsson, and B. J. Nilsson. Finding the shortest watch-
man route in a simple polygon. Discrete Comput. Geom., 22(3):377–
402, 1999.

[32] W. Chin and S. Ntafos. Optimum watchman routes. In Proc. 2nd
Annu. ACM Sympos. Comput. Geom., pages 24–33, 1986.

[33] W.-P. Chin and S. Ntafos. Shortest watchman routes in simple poly-
gons. Discrete Comput. Geom., 6(1):9–31, 1991.

[34] W.-P. Chin and S. Ntafos. The zookeeper problem. Inform. Sci.,
63:245–259, 1992.

[35] K. S. Chong and L. Kleeman. Accurate odometry and error modelling
for a mobile robot. In IEEE Internat. Conf. Robot. Automat., pages
2783–2788, 1997.

[36] H. Choset. Coverage for robotics - A survey of recent results. Ann.
Math. Artif. Intell., 31:113–126, 2001.

[37] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun. Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, Boston, 2005.

[38] J. Czyzowicz, P. Egyed, H. Everett, D. Rappaport, T. Shermer,
D. Souvaine, G. Toussaint, and J. Urrutia. The aquarium keeper’s
problem. In Proc. 2nd ACM-SIAM Sympos. Discrete Algorithms,
pages 459–464, Jan. 1991.

134 Bibliography

[39] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Com-
putational Geometry: Algorithms and Applications. Springer-Verlag,
Berlin, Germany, 2nd edition, 2000.

[40] E. Demaine, A. López-Ortiz, and I. Munro. Robot localization without
depth perception. In Proc. 8th Scand. Workshop Algorithm Theory,
volume 2368 of Lecture Notes Comput. Sci., pages 249–259, 2002.

[41] E. D. Demaine, S. P. Fekete, and S. Gal. Online searching with turn
cost. Submitted to Theor. Comput. Sci.

[42] X. Deng, T. Kameda, and C. Papadimitriou. How to learn an unknown
environment. In Proc. 32nd Annu. IEEE Sympos. Found. Comput.
Sci., pages 298–303, 1991.

[43] X. Deng, T. Kameda, and C. Papadimitriou. How to learn an unknown
environment I: The rectilinear case. J. ACM, 45(2):215–245, 1998.

[44] X. Deng and C. H. Papadimitriou. Exploring an unknown graph.
Journal of Graph Theory, 32:265–297, 1999.

[45] C. Dienelt. Ein Java Applet zur Exploration gitterförmiger
Umgebungen in 3D. Diplomarbeit, Universität Bonn, 2005.
http://www.geometrylab.de/Gridrobot3D/.

[46] M. Dror, A. Efrat, A. Lubiw, and J. S. B. Mitchell. Touring a sequence
of polygons. In Proc. 35th Annu. ACM Sympos. Theory Comput.,
pages 473–482, 2003.

[47] G. Dudek, E. Milios, and I. M. Rekleitis. Multi-robot collaboration
for robust exploration. Ann. Math. Artif. Intell., 31:7–40, 2001.

[48] G. Dudek, K. Romanik, and S. Whitesides. Localizing a robot with
minimum travel. SIAM J. Comput., 27(2):583–604, Apr. 1998.

[49] C. A. Duncan, S. G. Kobourov, and V. S. A. Kumar. Optimal con-
strained graph exploration. In Proc. 12th ACM-SIAM Symp. Discr.
Algo., pages 307–314, 2001.

[50] R. El-Yaniv, R. Kaniel, and N. Linial. Competitive optimal on-line
leasing. Algorithmica, 25:116–140, 1999.

[51] A. Elfes. Using occupancy grids for mobile robot perception and nav-
igation. IEEE Computer, 22(6):46–57, 1989.

[52] B. Engels. Navigation in Gitterumgebungen für verteilte Robotersys-
teme mit eingeschränkter Sensorik. Diplomarbeit, Universität Bonn,
August 2005. http://www.geometrylab.de/RacingRobots/.

Bibliography 135

[53] A. Eubeler. Personal communication, 2004.

[54] A. Eubeler, R. Fleischer, T. Kamphans, R. Klein, E. Langetepe, and
G. Trippen. Competitive online searching for a ray in the plane. In
Abstracts 21st European Workshop Comput. Geom., pages 107–110,
2005.

[55] H. Everett. Hamiltonian paths in non-rectangular grid graphs. Report
86-1, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, 1986.

[56] S. Fekete, R. Klein, and A. Nüchter. Online searching with an au-
tonomous robot. In Proc. 6th Workshop Algorithmic Found. Robot.,
pages 335–350, 2004.

[57] A. Fiat and G. Woeginger, editors. On-line Algorithms: The State of
the Art, volume 1442 of Lecture Notes Comput. Sci. Springer-Verlag,
1998.

[58] R. Fleischer. On the bahncard problem. Theoretical Computer Science,
268(1):161–174, October 2001.

[59] R. Fleischer, T. Kamphans, R. Klein, E. Langetepe, and G. Trip-
pen. Competitive online approximation of the optimal search ratio.
In Proc. 12th Annu. European Sympos. Algorithms, volume 3221 of
Lecture Notes Comput. Sci., pages 335–346. Springer-Verlag, 2004.

[60] R. Fleischer, T. Kamphans, R. Klein, E. Langetepe, and G. Trippen.
Competitive search ratio of graphs and polygons. In Abstracts 20th
European Workshop Comput. Geom., pages 127–130. Universidad de
Sevilla, 2004.

[61] R. Fleischer, K. Romanik, S. Schuierer, and G. Trippen. Optimal
robot localization in trees. Information and Computation, 171:224–
247, 2001.

[62] R. Fleischer and G. Trippen. Exploring an unknown graph efficiently.
In Proc. 13th Annu. European Sympos. Algorithms, volume 3669 of
Lecture Notes Comput. Sci., pages 11–22. Springer-Verlag, 2005.

[63] Y. Gabriely and E. Rimon. Competitive on-line coverage of grid en-
vironments by a mobile robot. Comput. Geom. Theory Appl., 24:197–
224, 2003.

[64] S. Gal. Search Games, volume 149 of Mathematics in Science and
Engeneering. Academic Press, New York, 1980.

[65] S. Gal. Continous search games. In Search theory: some recent devel-
opments., volume 112 of Lecture Notes in pure and applied mathemat-
ics, pages 33–53. Dekker, New York, NY, 1989.

136 Bibliography

[66] The interactive Geometry-Lab. http://www.geometrylab.de/.

[67] J. E. Goodman and J. O’Rourke, editors. Handbook of Discrete and
Computational Geometry, volume 27 of Discrete Mathematics and Its
Applications. CRC Press LLC, Boca Raton, FL, 2nd edition, 2004.

[68] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics.
Addison-Wesley, Reading, MA, second edition, 1994.

[69] M. Grigni, E. Koutsoupias, and C. H. Papadimitriou. An approxima-
tion scheme for planar graph TSP. In Proc. 36th Annu. IEEE Sympos.
Found. Comput. Sci., pages 640–645, 1995.

[70] P. Gritzmann. Personal communication via Rolf Klein, 2001.

[71] L. J. Guibas and J. Hershberger. Optimal shortest path queries in a
simple polygon. In Proc. 3rd Annu. ACM Sympos. Comput. Geom.,
pages 50–63, 1987.

[72] L. J. Guibas, R. Motwani, and P. Raghavan. The robot localization
problem. SIAM J. Comput., 26(4):1120–1138, Aug. 1997.

[73] D. Halperin, L. E. Kavraki, and J.-C. Latombe. Robotics. In J. E.
Goodman and J. O’Rourke, editors, Handbook of Discrete and Compu-
tational Geometry, chapter 41, pages 755–778. CRC Press LLC, Boca
Raton, FL, 1997.

[74] D. Halperin, L. E. Kavraki, and J.-C. Latombe. Robot algorithms. In
M. Atallah, editor, Algorithms and Theory of Computation Handbook,
chapter 21, pages 21.1–21.21. CRC Press LLC, 1999.

[75] M. Hammar and B. J. Nilsson. Concerning the time bounds of exist-
ing shortest watchman route algorithms. In Proc. 11th International
Symposium on Fundamentals of Computation Theory, volume 1279
of Lecture Notes Comput. Sci., pages 210–221. Springer-Verlag, Sept.
1997.

[76] M. Hammar, B. J. Nilsson, and S. Schuierer. Parallel searching on m
rays. Comput. Geom. Theory Appl., 18:125–139, 2001.

[77] U. Handel, C. Icking, T. Kamphans, E. Langetepe, and
W. Meiswinkel. Gridrobot — an environment for simulating ex-
ploration strategies in unknown cellular areas. Java Applet, 2000.
http://www.geometrylab.de/Gridrobot/.

[78] U. Handel, T. Kamphans, E. Langetepe, and W. Meiswinkel.
Polyrobot — an environment for simulating strategies for
robot navigation in polygonal scenes. Java Applet, 2002.
http://www.geometrylab.de/Polyrobot/.

Bibliography 137

[79] A. Hemmerling. Labyrinth Problems: Labyrinth-Searching Abilities of
Automata. B. G. Teubner, Leipzig, 1989.

[80] J. Hershberger and S. Suri. An optimal algorithm for Euclidean short-
est paths in the plane. SIAM J. Comput., 28(6):2215–2256, 1999.

[81] J. Hertzberg, K. Lingemann, A. Nüchter, and H. Surmann. Fast ac-
quiring and analysis of three dimensional laser range data. In Proc.
6th Internat. Fall Workshop Vision, Modell., and Visualization, pages
59 – 66, 2001.

[82] C. Hipke, C. Icking, R. Klein, and E. Langetepe. How to find a point
on a line within a fixed distance. Discrete Appl. Math., 93:67–73, 1999.

[83] F. Hoffmann, C. Icking, R. Klein, and K. Kriegel. A competitive
strategy for learning a polygon. In Proc. 8th ACM-SIAM Sympos.
Discrete Algorithms, pages 166–174, 1997.

[84] F. Hoffmann, C. Icking, R. Klein, and K. Kriegel. The polygon explo-
ration problem. SIAM J. Comput., 31:577–600, 2001.

[85] Y. K. Hwang and N. Ahuja. Gross motion planning – a survey. ACM
Comput. Surv., 24(3):219–291, 1992.

[86] C. Icking. Motion and Visibility in Simple Polygons. PhD thesis,
Department of Computer Science, FernUniversität Hagen, 1994.

[87] C. Icking, T. Kamphans, R. Klein, and E. Langetepe. Exploring an
unknown cellular environment. In Abstracts 16th European Workshop
Comput. Geom., pages 140–143. Ben-Gurion University of the Negev,
2000.

[88] C. Icking, T. Kamphans, R. Klein, and E. Langetepe. On the compet-
itive complexity of navigation tasks. In H. Bunke, H. I. Christensen,
G. D. Hager, and R. Klein, editors, Sensor Based Intelligent Robots,
volume 2238 of Lecture Notes Comput. Sci., pages 245–258, Berlin,
2002. Springer.

[89] C. Icking, T. Kamphans, R. Klein, and E. Langetepe. Exploring simple
grid polygons. In 11th Internat. Comput. Combin. Conf., volume 3595
of Lecture Notes Comput. Sci., pages 524–533. Springer, 2005.

[90] C. Icking and R. Klein. Competitive strategies for autonomous sys-
tems. In H. Bunke, T. Kanade, and H. Noltemeier, editors, Modelling
and Planning for Sensor Based Intelligent Robot Systems, pages 23–40.
World Scientific, Singapore, 1995.

138 Bibliography

[91] C. Icking, R. Klein, P. Köllner, and L. Ma. Java applets for the dy-
namic visualization of voronoi diagrams. In R. Klein, H. W. Six, and
L. Wegner, editors, Computer Science in Perspective: Essays Ded-
icated to Thomas Ottmann, volume 2598 of Lecture Notes Comput.
Sci., pages 191–205. Springer, Berlin, 2002.

[92] C. Icking, R. Klein, and E. Langetepe. Searching for the kernel of a
polygon: A competitive strategy using self-approaching curves. Tech-
nical Report 211, Department of Computer Science, FernUniversität
Hagen, Germany, 1997.

[93] C. Icking, R. Klein, and E. Langetepe. An optimal competitive strat-
egy for walking in streets. In Proc. 16th Sympos. Theoret. Aspects
Comput. Sci., volume 1563 of Lecture Notes Comput. Sci., pages 110–
120. Springer-Verlag, 1999.

[94] C. Icking, R. Klein, E. Langetepe, S. Schuierer, and I. Semrau. An
optimal competitive strategy for walking in streets. SIAM J. Comput.,
33:462–486, 2004.

[95] C. Icking, R. Klein, and L. Ma. How to look around a corner. In Proc.
5th Canad. Conf. Comput. Geom., pages 443–448, 1993.

[96] C. Icking, G. Rote, E. Welzl, and C. Yap. Shortest paths for line
segments. Algorithmica, 10:182–200, 1993.

[97] A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter. Hamilton paths
in grid graphs. SIAM J. Comput., 11:676–686, 1982.

[98] P. Jaillet and M. Stafford. Online searching. Operations Research,
49(4):501–515, July 2001.

[99] B. Kalyanasundaram and K. Pruhs. A competitive analysis of algo-
rithms for searching unknown scenes. Comput. Geom. Theory Appl.,
3:139–155, 1993.

[100] B. Kalyanasundaram and K. Pruhs. Constructing competitive tours
from local information. Theoret. Comput. Sci., 130:125–138, 1994.

[101] T. Kamphans and R. Klein. Bewegungsplanung für Roboter. Vor-
lesungsskript, Universität Bonn, Institut für Informatik, 2001.

[102] T. Kamphans and E. Langetepe. Online Bewegungsplanung für
Roboter. Vorlesungsskript, Universität Bonn, Institut für Informatik,
2002.

[103] T. Kamphans and E. Langetepe. The Pledge algorithm reconsidered
under errors in sensors and motion. In Proc. of the 1th Workshop on

Bibliography 139

Approximation and Online Algorithms, volume 2909 of Lecture Notes
Comput. Sci., pages 165–178. Springer, 2003.

[104] T. Kamphans and E. Langetepe. Finding a door along a wall with an
error afflicted robot. In Abstracts 20th European Workshop Comput.
Geom., pages 143–146. Universidad de Sevilla, 2004.

[105] T. Kamphans and E. Langetepe. On optimizing multi-sequence func-
tionals for competitive analysis. In Abstracts 21st European Workshop
Comput. Geom., pages 111–114, 2005.

[106] T. Kamphans and E. Langetepe. Optimal competitive online ray
search with an error-prone robot. In Proc. 4th Internat. Workshop
Efficient Experim. Algorithms, volume 3503 of Lecture Notes Comput.
Sci., pages 593–596. Springer, 2005.

[107] T. Kamphans and E. Langetepe. Optimal competitive online
ray search with an error-prone robot. Technical Report 003,
Department of Computer Science I, University of Bonn, 2005.
http://web.informatik.uni-bonn.de/I/publications/kl-ocolr-05t.pdf.

[108] M.-Y. Kao, Y. Ma, M. Sipser, and Y. Yin. Optimal constructions of
hybrid algorithms. J. Algor., 29:142–164, 1998.

[109] M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown envi-
ronment: An optimal randomized algorithm for the cow-path problem.
Inform. Comput., 133(1):63–79, 1996.

[110] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars. Proba-
bilistic roadmaps for path planning in high dimensional configuration
spaces. Tech. Report UU-CS-1994-32, Dept. Comput. Sci., Utrecht
Univ., P.O.Box 80.089, 3508 TB Utrecht, The Netherlands, August
1994.

[111] K. Kedem and M. Sharir. An efficient motion planning algorithm
for a convex rigid polygonal object in 2-dimensional polygonal space.
Discrete Comput. Geom., 5:43–75, 1990.

[112] K. Kedem, M. Sharir, and S. Toledo. On critical orientations in the
Kedem-Sharir motion planning algorithm for a convex polygon in the
plane. Discrete Comput. Geom., 17:227–240, 1997.

[113] R. Klein. Walking an unknown street with bounded detour. Comput.
Geom. Theory Appl., 1:325–351, 1992.

[114] R. Klein. Algorithmische Geometrie. Addison-Wesley, Bonn, 1997.

[115] R. Klein. Algorithmische Geometrie. Springer, Heidelberg, 2nd edi-
tion, 2005.

140 Bibliography

[116] J. M. Kleinberg. On-line search in a simple polygon. In Proc. 5th
ACM-SIAM Sympos. Discrete Algorithms, pages 8–15, 1994.

[117] D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of Com-
puter Programming. Addison-Wesley, Reading, MA, 1st edition, 1968.

[118] E. Koutsoupias, C. H. Papadimitriou, and M. Yannakakis. Searching a
fixed graph. In Proc. 23th Internat. Colloq. Automata Lang. Program.,
volume 1099 of Lecture Notes Comput. Sci., pages 280–289. Springer,
1996.

[119] B. J. Kuipers and Y.-T. Byun. A robust qualitative method for spatial
learning in unknown environments. In Proc. 7th Nat. Conf. Artif.
Intell. Morgan Kaufman, 1988.

[120] B. J. Kuipers and Y.-T. Byun. A robot exploration and mapping
strategy based on a semantic hierarchy of spatial representations. J.
Robot. Auton. Syst., 8:47–63, 1991.

[121] L. Kusch and H.-J. Rosenthal. Mathematik Teil 3: Differentialrech-
nung. Giradet, 2nd edition, 1970.

[122] E. Langetepe. Design and Analysis of Strategies for Autonomous Sys-
tems in Motion Planning. PhD thesis, Department of Computer Sci-
ence, FernUniversität Hagen, 2000.

[123] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
Boston, 1991.

[124] S. Laubach and J. Burdick. RoverBug: Long range navigation for
mars rovers. In P. Corke and J. Trevelyan, editors, Proc. 6th Int.
Symp. Experimental Robotics, volume 250 of Lecture Notes in Control
and Information Sciences, pages 339–348. Springer, 1999.

[125] S. M. LaValle. Planning Algorithms. Cambridge University Press,
2006. to appear.

[126] S. M. LaValle, S. Rajko, and S. Sachs. Visibility-based pursuit-evasion
in an unknown planar environment. Internat. J. Robot. Res., 23:3–26,
2004.

[127] D. Lee and M. Recce. Quantitative evaluation of the exploration
strategies of a mobile robot. Internat. J. Robot. Res., 16(4):413–447,
1997.

[128] A. López-Ortiz. On-line target searching in bounded and unbounded
domains. PhD thesis, Univ. Waterloo, Waterloo, Canada, 1996.

Bibliography 141

[129] A. López-Ortiz. Algorithmic foundations of the internet. SIGACT
News, 36:45–62, 2005.

[130] A. López-Ortiz and S. Schuierer. Simple, efficient and robust strategies
to traverse streets. In Proc. 7th Canad. Conf. Comput. Geom., pages
217–222, 1995.

[131] A. López-Ortiz and S. Schuierer. The ultimate strategy to search on
m rays? Theor. Comput. Sci., 261(2):267–295, 2001.

[132] A. López-Ortiz and S. Schuierer. Searching and on-line recognition of
star shaped polygons. Inform. Comput., 185:66–88, 2003.

[133] A. López-Ortiz and S. Schuierer. Online parallel heuristics, proces-
sor scheduling, and robot searching under the competitive framework.
Theoret. Comput. Sci., 310:527–537, 2004.

[134] A. López-Ortiz and G. Sweet. Parallel searching on a lattice. In Proc.
13th Canad. Conf. Comput. Geom., pages 125–128, 2001.

[135] V. J. Lumelsky, S. Mukhopadhyay, and K. Sun. Dynamic path plan-
ning in sensor-based terrain acquisition. IEEE Trans. Robot. Autom.,
6(4):462–472, Aug. 1990.

[136] V. J. Lumelsky and T. Skewis. Incorporating range sensing in
the robot navigation function. IEEE Trans. Syst. Man Cybern.,
20(5):1058–1069, 1990.

[137] V. J. Lumelsky and A. A. Stepanov. Path-planning strategies for a
point mobile automaton moving amidst unknown obstacles of arbi-
trary shape. Algorithmica, 2:403–430, 1987.

[138] V. J. Lumelsky and S. Tiwari. An algorithm for maze searching with
azimuth input. In Proc. 1994 Internat. Conf. Robot. Automat., pages
111–116, 1994.

[139] Macromedia. Flash MX. http://www.macromedia.com/software/flash/
Date of access: 04/12/2006.

[140] J. S. B. Mitchell. Guillotine subdivisions approximate polygonal sub-
divisions: A simple new method for the geometric k-MST problem. In
Proc. 7th ACM-SIAM Sympos. Discrete Algorithms, pages 402–408,
1996.

[141] J. S. B. Mitchell. Shortest paths and networks. In J. E. Goodman
and J. O’Rourke, editors, Handbook of Discrete and Computational
Geometry, chapter 24, pages 445–466. CRC Press LLC, Boca Raton,
FL, 1997.

142 Bibliography

[142] J. S. B. Mitchell. Geometric shortest paths and network optimiza-
tion. In J.-R. Sack and J. Urrutia, editors, Handbook of Compu-
tational Geometry, pages 633–701. Elsevier Science Publishers B.V.
North-Holland, Amsterdam, 2000.

[143] H. P. Moravec and A. Elfes. High resolution maps from wide angle
sonar. In Proc. IEEE Internat. Conf. Robot. Autom., pages 116–121,
1985.

[144] H. Noborio and T. Yoshioka. On the sensor-based navigation under
position and orientation errors. J. Automatisierungstechnik, 48:281–
288, 2000.

[145] H. Noborio, T. Yoshioka, and T. Hamaguchi. On-line deadlock-free
path-planning algorithms by means of a sensor-feedback tracing. In
Proc. IEEE Int. Conf. Systems, Man, Cybernetics, pages 1291–1296,
1995.

[146] H. Noborio, T. Yoshioka, and T. Hamaguchi. On-line deadlock-free
path-planning algorithms in the presence of a dead reckoning error.
In Proc. IEEE Int. Conf. Systems, Man, Cybernetics, pages 483–488,
1995.

[147] S. Ntafos. The robber route problem. Inform. Process. Lett., 34(2):59–
63, Mar. 1990.

[148] S. Ntafos. Watchman routes under limited visibility. Comput. Geom.
Theory Appl., 1(3):149–170, 1992.

[149] C. Ó’Dúnlaing and C. K. Yap. A “retraction” method for planning
the motion of a disk. J. Algorithms, 6:104–111, 1985.

[150] J. O’Rourke. Art Gallery Theorems and Algorithms. The International
Series of Monographs on Computer Science. Oxford University Press,
New York, NY, 1987.

[151] J. O’Rourke. Computational Geometry in C. Cambridge University
Press, 2nd edition, 1998.

[152] M. H. Overmars. A random approach to motion planning. Report
RUU-CS-92-32, Dept. Comput. Sci., Utrecht Univ., Utrecht, Nether-
lands, Oct. 1992.

[153] M. H. Overmars. Recent developments in motion planning. Tech.
Report UU-CS-2002-004, Inst. of Inform. and Comput. Sci., Utrecht
Univ., P.O.Box 80.089, 3508 TB Utrecht, The Netherlands, 2002.

[154] C. H. Papadimitriou and M. Yannakakis. Shortest paths without a
map. Theoret. Comput. Sci., 84(1):127–150, 1991.

Bibliography 143

[155] S. Rajko and S. M. La Valle. A pursuit-evasion bug algorithm. In
Proc. IEEE Conf. Robotics Automat., 2001.

[156] A. Randolph. Ricochet robots. Board Game, german edition by Aba-
cus Games, Dreieich, 1999.

[157] N. S. V. Rao, S. S. Iyengar, B. J. Oommen, and R. L. Kashyap. On
terrain model acquisition by a point robot amidst polyhedral obstacles.
Internat. J. Robot. Autom., 4(4):450–455, 1988.

[158] N. S. V. Rao, S. Kareti, W. Shi, and S. S. Iyengar. Robot navigation
in unknown terrains: introductory survey of non-heuristic algorithms.
Technical Report ORNL/TM-12410, Oak Ridge National Laboratory,
1993.

[159] J.-R. Sack and J. Urrutia, editors. Handbook of Computational Geom-
etry. North-Holland, Amsterdam, 2000.

[160] A. Sankaranarayanan and M. Vidyasagar. Path planning for moving
a point object amidst unknown obstacles in a plane: A new algorithm
and a general theory for algorithm developments. In Proceedings of
1990 IEEE Conf. on Decision and Control, pages 1111–1119, 1990.

[161] S. Schuierer. On-line searching in simple polygons. In H. Christensen,
H. Bunke, and H. Noltemeier, editors, Sensor Based Intelligent Robots,
volume 1724 of LNAI, pages 220–239. Springer Verlag, 1997.

[162] S. Schuierer. Searching on m bounded rays optimally. Technical Re-
port 112, Institut für Informatik, Universität Freiburg, Germany, 1998.

[163] S. Schuierer. A lower bound for randomized searching on m rays. In
R. Klein, H. W. Six, and L. Wegner, editors, Computer Science in
Perspective: Essays Dedicated to Thomas Ottmann, volume 2598 of
Lecture Notes Comput. Sci., pages 264–277. Springer-Verlag, Berlin,
2003.

[164] S. Schuierer and I. Semrau. An optimal strategy for searching in un-
known streets. In Proc. 16th Sympos. Theoret. Aspects Comput. Sci.,
volume 1563 of Lecture Notes Comput. Sci., pages 121–131. Springer-
Verlag, 1999.

[165] J. T. Schwartz and M. Sharir. A survey of motion planning and related
geometric algorithms. Artif. Intell., 37:157–169, 1988.

[166] J. T. Schwartz and M. Sharir. Algorithmic motion planning in
robotics. In J. van Leeuwen, editor, Algorithms and Complexity, vol-
ume A of Handbook of Theoretical Computer Science, pages 391–430.
Elsevier, Amsterdam, 1990.

144 Bibliography

[167] J. T. Schwartz and C. Yap. Advances in Robotics Vol. I: Algorithmic
and geometric aspects of robotics. Lawrence Erlbaum Associates, 1987.

[168] C. E. Shannon. Presentation of a maze solving machine. In H. von
Foerster, M. Mead, and H. L. Teuber, editors, Cybernetics: Circular,
Causal and Feedback Mechanisms in Biological and Social Systems,
Transactions Eighth Conference, 1951, pages 169–181, New York,
1952. Josiah Macy Jr. Foundation. Reprint in [169].

[169] C. E. Shannon. Presentation of a maze solving machine. In N. J. A.
Sloane and A. D. Wyner, editors, Claude Shannon: Collected Papers,
volume PC-03319. IEEE Press, 1993.

[170] M. Sharir. Algorithmic motion planning. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geom-
etry, chapter 40, pages 733–754. CRC Press LLC, Boca Raton, FL,
1997.

[171] M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their
Geometric Applications. Cambridge University Press, New York, 1995.

[172] Sick AG. Productinformation laser scanner.
http://www.sick.de/de/products/categories/safety/espe/
laserscanner/de.html, Date of access: 04/12/2006.

[173] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update
and paging rules. Commun. ACM, 28:202–208, 1985.

[174] A. Stentz. Optimal and efficient path planning for unknown and dy-
namic environments. Technical Report CMU-RI-TR-93-20, Carnegie
Mellon University Robotics Institute, August 1993.

[175] A. Stentz. Optimal and efficient path planning for partially-known
environments. In Proc. IEEE Internat. Conf. Robot. Automat., pages
3310–3317, 1994.

[176] Sun Microsystems. Java development kit. http://java.sun.com/
Date of access: 04/12/2006.

[177] P. Švestka and M. H. Overmars. Motion planning for car-like robots
using a probabilistic learning approach. Tech. Report UU-CS-1994-33,
Dept. Comput. Sci., Utrecht Univ., P.O.Box 80.089, 3508 TB Utrecht,
The Netherlands, August 1994.

[178] X. Tan. Fast computation of shortest watchman routes in simple poly-
gons. Inform. Process. Lett., 77:27–33, 2001.

Bibliography 145

[179] X. Tan and T. Hirata. Constructing shortest watchman routes by
divide-and-conquer. In Proc. 4th Annu. Internat. Sympos. Algorithms
Comput., volume 762 of Lecture Notes Comput. Sci., pages 68–77.
Springer-Verlag, 1993.

[180] X. Tan and T. Hirata. Shortest safari routes in simple polygon. In
Proc. 5th Annu. Internat. Sympos. Algorithms Comput., volume 834
of Lecture Notes Comput. Sci., pages 523–531. Springer-Verlag, 1994.

[181] X. Tan, T. Hirata, and Y. Inagaki. Corrigendum to “an incremental
algorithm for constructing shortest watchman routes”. Internat. J.
Comput. Geom. Appl., 9(3):319–323, 1999.

[182] X. H. Tan, T. Hirata, and Y. Inagaki. An incremental algorithm for
constructing shortest watchman routes. Internat. J. Comput. Geom.
Appl., 3(4):351–365, 1993.

[183] C. J. Taylor and D. Kriegman. Vision-based motion planning and
exploration algorithms for mobile robots. IEEE Trans. Robot. Autom.,
14:417–427, 1998.

[184] G. Trippen. Online robot exploration – a survey. Unpublished
manuscript, 2002.

[185] C. Umans and W. Lenhart. Hamiltonian cycles in solid grid graphs. In
Proc. 38th Annu. IEEE Sympos. Found. Comput. Sci., pages 496–507,
1997.

[186] J. R. VanderHeide and N. S. V. Rao. Terrain coverage of an unknown
room by an autonomous mobile robot. Technical Report ORNL/TM-
13117, Oak Ridge National Laboratory, 1995.

[187] I. Wegener. Effiziente Algorithmen für grundlegende Funktionen.
Teubner, 1998.

[188] E. W. Weisstein. Simple polyhedron.
http://mathworld.wolfram.com/SimplePolyhedron.html
Date of access: 04/12/2006.

[189] B. Yamauchi, A. Schultz, and W. Adams. Mobile robot exploration
and map-building with continuous localization. In Proc. IEEE Inter-
nat. Conf. Robot. Autom., 1998.

[190] A. Zelinsky. A mobile robot exploration algorithm. IEEE Transact.
Robot. Automat., 8(6):707–717, 1992.

146 Bibliography

Index

δ-pseudo orthogonal 82, 105

A

Abelson 9, 72, 73

Abramowski 2
adjacent .15

Agarwal . 8

Ahlswede . 10

Ahuja . 7

Albers 10, 11, 15, 120, 121
Alpern .8

Angluin . 4, 71

aquarium keeper route 11

area . 16
Arkin .14

Arora . 14

Ausiello . 5

axis parallel 81

B

Baeza-Yates 9, 10, 85

Batalin . 7

Beck .9

Bellmann . 8
Berman . 7, 8

Bespamyatnikh 10

Betke . 11, 15

BFS . 8, 107

blind3, 85, 110, 112
blocked cell 15

Blum . 8

Borenstein . 4

Borodin . 5

Bose .11
Boyar . 5
Bröcker . 9
Bug . 7

Burdick .8
Burgard . 11
Byrne . 4
Byun . 7

C

C-approximation 111
Canny . 8
Carlsson . 10
cell . 13, 15
CellExplore 107
characteristic polynom . . . 98, 101

Chin 10, 109, 115, 117, 121
Chong . 4
Choset .7
competitive .5
competitive analysis 5, 32, 89, 91,

126
competitive factor . 5, 16, 32, 85,

89–91, 95, 99, 102, 118
computational geometry 2
convex .81
covering 7, 14
crossing . 77
Culberson . 9
Czyzowicz . 11

D

de Berg . 2
Demaine 4, 9, 11, 71, 85
Deng 10, 11, 105, 116

148 Index

depth restrictable 111
DFS8, 21, 107, 126

Dienelt . 65
diSessa 9, 72, 73

divergence 82
division cell40, 43

doubling strategy 9, 85, 113

drift . 87
Dror 10, 116, 120

Dudek4, 11, 71
Duncan . 112

E

Efrat . 10

El-Yaniv . 5
Elfes . 15

Engels . 67

essential cut 9, 108, 115
Eubeler 10, 108, 109

Euclidean metric 116
Everett . 14

excess distance ratio 6, 126
exploration6, 13, 107, 112

F

Fekete . 10

Feng . 4
Fiat . 5

Fleischer 5, 6, 11, 108, 112

free cell . 15
free space2, 74

free space condition . . . 76, 77, 80
functional 93, 95, 99

G

Gabriely 14, 59

Gal 8, 9, 85, 95, 101
game theory 8

generating function 98

geometric modeling 2
geometric search110

Geometry-Lab 65

goal set . 109
Goodman .2
Graham . 98
greedy online 116
grid graph3, 11, 14, 15
grid polygon 13, 15, 126
Grigni . 14
Guibas . 8, 11

H

Halperin . 7
Hamiltonian cycle 14
Hammar 9, 85
Handel . 63
hard searchable 109, 120
heading . 74
Hemmerling 9, 72, 73
Henzinger . 11
Hershberger 8
hexagon . 69
Hipke . 9, 85
Hirata . 11
Hoffmann 10, 117
hole 3, 10, 15, 37, 120
homogeneity 95
Hwang .7

I

Icking 7, 9, 10, 65, 105, 108, 117,
118

Itai . 14

J

Jaillet . 9
Java Applet 63, 73, 104
Jonsson . 10
Jordan curve 79

K

Kalyanasundaram 9, 11
Kameda 10, 116
Kao . 9, 85

Index 149

Kavraki . 7
Kedem . 8
kernel . 10
Kleeman .4
Klein 2, 7, 9, 10, 85, 108, 117
Kleinberg 9, 10
Knuth . 5
Koopmann . 8
Koutsoupias 6, 9, 108
Kozen . 8
Kriegel 10, 117
Kriegman .7
Kuipers .7
Kursawe 10, 11

L

L1-metric 10, 116
L2-metric 10, 116
Langetepe 9, 85
Larsen . 5
laser scanner 3, 13
Latombe .7
lattice . 10
Laubach . 8
LaValle 4, 7, 8
law of reflection 109, 116
Lee . 7
left reflex vertex 118
Left-Hand Rule 21, 23, 61
Lenhart . 14
localization 7, 110
lost cow problem 85
lower bound . . 6, 10, 16, 122, 126
Lubiw . 10, 11
Lumelsky 4, 6–8, 11, 71
López-Ortiz 4, 9–11, 71, 85

M

m-ray search 9, 85, 101, 107
Macromedia Flash 66
Manhatten metric 116
mapping .7
Mars Rover . 8

Mitchell 8, 10, 14
model

costs 4, 16, 111, 126
environment 2, 125

3D . 60
cellular 13
orthogonal 81

robot . 3
blind 4, 112
error prone 82, 86, 125
restricted 66
short sighted 13
vision 4, 114

monotone strategy101
Moravec . 15
Motwani .11
Müller . 2
Mukhopadhyay 11
Munro . 4, 11

N

navigation .6
neighboring 15
Newman . 9
Nilsson . 10
Noborio . 4, 71
nominal value 80, 82, 86
NP-complete 67
NP-hard 8, 14, 121
Ntafos . 10, 11, 14, 109, 115, 117,

121
Nüchter . 10

O

obstacle2, 15, 37
obstacle condition77, 80
odometry . 4
Ó’Dúnlaing . 8
offline algorithm 5
one-way road 105
online algorithm 5
optimal competitive 6
optimal search path111

150 Index

optimal search ratio111
O’Rourke . 2
orthogonal polygon see

rectilinear polygon
orthogonal scene 81
Overmars . 7

P

Papadimitriou 8–11, 116

path . 15
perimeter . 16
periodic strategy 101
piecemeal exploration11, 15
Pledge 9, 71–73, 125
PolyExplore 10, 105, 117
polygon . 2
polygonal scene3
position . 74
potential field method 7
Pruhs . 9, 11
pseudo orthogonal82, 105

R

Raghavan 8, 11
Rajko . 4, 8
Randolph .66
Rao . 7
Rawlins .9
Recce . 7
rectilinear polygon . . 3, 9, 10, 81,

115, 116
rectilinear scene 81
recurrence . 97
reflex . 81
Reif . 8
Ricochet Robots 66
right reflex vertex 118
Rimon . 14, 59
Rivest . 11
roadmap approach 7
robber route 11
Romanik . 11

S

s-extendable 122
Sachs . 4
Sack . 2
safari route 10
Sankaranarayanan 8
Scan-STC . 59
Schieber . 8
Schuierer 4, 9–11, 71, 85
Schwartz . 2, 8
search depth 85, 87, 102
search path 85, 110
search ratio . . 6, 9, 108, 110, 126
searching 6, 107
Semrau . 9
service robot 13
Shannon . 8
Sharir . 8
shortest path tree 118
shortest watchman route 10, 109,

115
simple polygon 3, 15
Singh . 11
sinuosity16, 55
Skewis . 8
Sleator . 5
SmartDFS 23, 107
Spanning Tree Covering 59
Spiral-STC 59
split cell22, 37
Stentz . 4, 71
Stepanov . 7
steps .15
streets . 9, 108
Sukhatme . 7
Sun . 11
Suri . 8
Švestka . 7
Sweet . 10

T

Tan . 10, 11
Tarjan . 5

Index 151

Tarry . 8
Taylor . 7
three dimensions 60
Tiwari . 4
Toledo . 8
touch . 77
touching . 15
traveling salesman 5, 14
Tremaux . 8
triangle .69
Trippen . 7, 11

U

Umans . 14
unimodality 95
upper bound 6
Urrutia . 2

V

VanderHeide7
vertex search 110
Vidyasagar . 8
visibility .3
visibility cut 115
visibility polygon . . 3, 10, 11, 115
vision 3, 110, 114, 121

W

wall problem8
Wegener . 10
Whitesides 11
window shopper problem 108
Woeginger . 5

Y

Yannakakis8, 9
Yap . 2, 8

Z

Zelinsky 4, 71
zookeeper route10

152 Index

Curriculum Vitae

Name: Thomas Kamphans
Date of birth: May 19, 1970
Place of birth: Unna, Germany

School: 1976 – 1980
Katharinen-Grundschule Unna

1980 – 1989
Geschwister-Scholl-Gymnasium Unna

Graduation: May 08, 1989
Abitur

Studies: 1990 – 1998
University of Dortmund
Subject: Computer science
Subsidiary subject: Electrical engineering

Final degree: September 08, 1993
Vordiplom (intermediate examination)

September 07, 1998
Diplom-Informatiker

Occupational Activities: October 1998 – July 2000
Research Associate, University of Hagen

Since August 2000
Research Associate, University of Bonn

