
EuroCG 2009, Brussels, Belgium, March 16–18, 2009

Online Square Packing

Sándor P. Fekete∗ Tom Kamphans∗ Nils Schweer∗

Abstract

We analyze the problem of packing squares in an on-
line fashion: Given an semi-infinite strip of width 1
and an unknown sequence of squares with side lengths
in [0, 1] that arrive from above, one at a time. The
objective is to pack these items as they arrive, mini-
mizing the resulting height. Just like in the classical
game of Tetris, each square must be moved along a
collision-free path to its final destination; in addition,
we may have to account for gravity in both motion
and position (i.e, squares are not allowed to move up
and any final destination has to be supported from
below). This problem has been considered before; the
best previous result is by Azar and Epstein, who gave
a 4-competitive algorithm in a setting without gravity,
based on ideas of shelf-packing, with the possibility
of letting squares “hang in the air” in order to assign
them to different levels, allowing an analysis that is
reminiscent of some bin-packing arguments.

We present an algorithm with competitive factor
34
13 ≈ 2.6154, with or without the presence of gravity.

1 Introduction

Packing problems arise in many different situations,
either concrete (where actual physical objects have to
be packed), or abstract (where the space is virtual,
e.g., in scheduling). Even in a one-dimensional set-
ting, computing an optimal set of positions in a con-
tainer for a known set of objects is a classical, hard
problem. Having to deal with two-dimensional ob-
jects adds a variety of difficulties; one of them is the
more complex structure of feasible placements; see,
for example, Fekete et al. [8]. Another one is actually
moving the objects into their final locations without
causing collisions or overlap along the way.

A different kind of difficulty may arise from a lack
of information: in many settings, objects have to be
assigned to their final locations one by one, without
knowing future items. Obviously, this makes the chal-
lenge even harder.

In this paper, we consider online packing of squares
into a vertical strip of unit width. Squares arrive from
above in an online fashion, one at a time, and have
to be moved to their final positions. On this path,
a square may move only through unoccupied space;

∗Braunschweig University of Technology, Computer Science,
Algorithms Group, 38106 Braunschweig, Germany

in allusion to the well-known computer game, this is
called the Tetris constraint. In addition, an item is
not allowed to move upwards and has to be supported
from below when reaching its final position; these con-
ditions are called gravity constraints. The objective is
to minimize the total height of the occupied part of
the strip.

1.1 Related Work

There is a considerable amount of work of online rect-
angle packing without the Tetris constraint, see Coff-
man et al. [4] for a quick overview. Most notably,
shelf-packing approaches [2] (in which the strip is sub-
divided into shelves of certain heights, and no two
rectangles within the same shelf get placed on top
of each other) cannot do better than an asymptotic
worst-case ratio of 1.691..., which can be achieved by
Harmonic shelf packing, see Csirik and Woeginger [5].

Every reader is certainly familiar with the classical
game of Tetris: Given a strip of fixed width, find on-
line placements for a sequence of objects falling down
from above, such that space is utilized as best as pos-
sible1. In this process, no item can ever move up-
ward or collide with another object. An item will
come to a stop only if it is supported from below,
and each placement has to be fixed before the next
item arrives. Even when disregarding the difficulty
of ever-increasing speed, Tetris is notoriously diffi-
cult: As was shown by Breukelaar et al. [3], Tetris
is PSPACE-hard, even for the original, limited set of
different objects.

Tetris-like online packing has been studied before.
Most notably, Azar and Epstein [1] considered online
packing of rectangles into a strip; just like in Tetris,
they considered the situation with or without rotation
of objects. For the case without rotation, they showed
that no constant competitive ratio is possible, unless
there is a fixed-size lower bound of ε on the size of
the objects, in which case there is an upper bound of
O(log 1

ε). For the case in which rotation is possible,
they showed a 4-competitive strategy, based on shelf-
packing methods, with all rectangles being rotated to
be placed on their narrow sides; until now, this is
also the best deterministic upper bound for squares.

1Obviously, there is a slight difference in the objective func-
tion, because Tetris aims at filling rows. In actual optimization
scenarios, this is less interesting, as it is not critical whether
a row is used to precisely 100%—in particular, as full rows do
not magically disappear in real life.

269

25th European Workshop on Computational Geometry, 2009

In this strategy, gravity is not taken into account, as
items are allowed to be placed at appropriate levels,
even if they are unsupported.

More recently, Coffmann, Downey, and Winkler [4]
considered probabilistic aspects of online rectangle
packing with Tetris constraint, without allowing rota-
tions. If n rectangle sizes are chosen uniformly at ran-
dom from the interval [0, 1], they showed that there
is a lower bound of (0.31382733...)n on the expected
height of the strip; using another kind of level-type
strategy, which arises from the bin-packing–inspired
Next Fit Level, they established an upper bound of
(0.36976421...)n on the expected height. Epstein and
van Stee gave an optimal bounded space algorithm
for online hypercube bin-packing for any dimension
d ≥ 2, and unbounded-space, competitive algorithms
for square and cube packing [6, 7].

2 Problem and Definitions

We are given a strip, S, of width 1 which is closed
at the bottom and has infinite height, as well as
a sequence, A1, . . . , An, of squares with side length
|Ai| ∈ [0, 1]. The squares are presented one by one;
the next square always arrives above all previously
placed squares. Our goal is to find a nonoverlapping
placement of squares in the strip that keeps the height
of the occupied area as low as possible. The sides of
the squares in the placement are parallel to the sides
of the strip. A packing has to fulfill two additional
constraints:

Gravity constraint: A square must be packed on top
of a square that has been packed before (i.e., the in-
tersection of the upper square’s bottom and the lower
square’s top must be a line segment); in addition, no
square may ever move up.

Tetris constraint: At the time a square is placed,
there is a collision-free path from the top of the strip
to the square’s final position.

We consider the online problem; that is, the se-
quence A is not known in advance. Our strategy gets
the squares one by one and has to place a square be-
fore it gets the next.

We call a square Aj a bottom neighbor of a square Ai

if the top side of Aj and the bottom side of Ai overlap
in more than one point. For every square Ai we define
the bottom sequence as follows: Ai is the first element
of this sequence and the next element is chosen as an
arbitrary bottom neighbor of the previous element.
The sequence ends if no such neighbor exists.

3 Algorithm

Consider two vertical lines of infinite length going up-
wards from the bottom side of S and parallel to the
left and the right side of S. We call the area between
these lines a slot, the lines the left boundary and the

A1 AS
1

T1

P

AW
1

A3AS
3 AS

3

AW
3

δ2

QR

AS
2

AW
2

δ′2

T2 T3

2−k1

2−k1−1 2−k1−1

2−k1−2 2−k1−2 2−k1−2 2−k1−2

δ′3|A3|−δ′3
A2

Figure 1: Squares Ai with their shadows AS
i and their

widening AW
i . δ′2 is equal to |A2| and δ′3 is equal to

δ3. The points P and Q are charged to A1. R is not
charged to A1, but to A2.

right boundary of the slot, and the distance between
the lines the width of the slot.

Now our algorithm works as follows: We divide the
strip S of width 1 into slots of different widths; for
every j = 0, 1, 2 . . . we create 2j slots of width 1

2j side
by side; that is, we divide S into one slot of width 1,
two slots of width 1

2 , four slots of width 1
4 and so on.

Note that a slot of width 2−i contains 2 slots of width
2−i−1; see Fig. 1.

For every square Ai we round the side length |Ai| to
the smallest number 1

2ki
that is larger than or equal to

|Ai|. We place Ai in the slot of width 2−ki that allows
Ai to be placed as near to the bottom of S as possible
by moving Ai down along the left boundary of the
chosen slot until another square is reached. We call
this algorithm SlotAlgorithm. It clearly satisfies the
Tetris and the Gravity constraints and next we show
that the produced height is at most 2.6154 times the
height of an optimal packing.

4 Analysis

Let Ai be a square placed by the SlotAlgorithm in
a slot Ti of width 2−ki . Let δi be the distance be-
tween the right side of Ai and the right boundary
of the slot of width 2−ki+1 that contains Ai and
δ′i := min{|Ai|, δi}. We call the area obtained by en-
larging Ai by δ′i to the right and by |Ai| − δ′i to the
left the shadow of Ai and denote it by AS

i . Thus, AS
i

is an area of the same size as Ai and lies completely
inside a slot of twice the width of Ai’s slot. Moreover,

270

EuroCG 2009, Brussels, Belgium, March 16–18, 2009

we define the widening of Ai as AW
i = (Ai ∪AS

i)∩Ti;
see Fig. 1.

Now, consider a point P in Ti that is not inside an
AW

j for any square Aj and that does not lie on the left
or the right boundary of any slot. We charge P to the
square Ai if AW

i is the first widening that intersects
the vertical line going upwards from P . We denote by
FAi

the set of all points charged to Ai and by |FAi
| its

area. The set of points lying on the left or the right
boundary of any slot has area zero and is therefore
neglected in the rest of this section. For the analysis,
we place a closing square, An+1, of side length 1 on
top of the packing.2 Therefore, every point in the
packing that does not lie inside an AW

j is charged to
a square. Because Ai and AS

i have the same area, we
can bound the height, ALG, of the packing produced
by the algorithm as follows:

ALG ≤ 2
n∑

i=1

|Ai|2 +
n+1∑
i=1

|FAi
|

Theorem 1 The SlotAlgorithm is competitive with
factor 2.6154.

Proof. The height of an optimal packing is at least∑n
i=1 |Ai|2 and, therefore, it suffices to show that

|FAi | ≤ 0.6154 · |Ai|2 holds for every square Ai.
We construct for every Ai a sequence of squares
Bi

1, B
i
2, . . . , B

i
m with Bi

1 = Ai (to ease notation, we
omit the superscript i in the following). We denote
by EBj

the extension of the bottom side of Bj to the
left and to the right (Fig. 2). We will show that by
an appropriate choice of the sequence we can bound
the area of the part of FB1 that lies between a con-
secutive pair of extensions, EBj and EBj+1 , in terms
of Bj+1 and the slot widths. From this we will de-
rive the upper bound on the area of FB1 . We assume
throughout the proof that the square Bj , j ≥ 1, is
placed in a slot, Tj , of width 2−kj . Note that FB1 is
completely contained in T1.

A slot is called active (with respect to EBj and B1)
if there is a point in the slot that lies below EBj and
that is charged to B1 and nonactive otherwise. If it
is clear from the context we leave out the B1.

The sequence of squares is chosen as follows: B1 is
the first square and the square Bj+1, j = 1, . . . ,m−1
is chosen as the smallest one that intersects or touches
EBj in an active slot (w.r.t. EBj and B1) of width
2−kj and that is not equal to Bj . The sequence ends
if all slots are nonactive w.r.t. to an extension EBm .
We claim the following:

(i) Bj+1 exists for j +1 ≤ m and |Bj+1| ≤ 2−kj−1

for j + 1 ≤ m− 1.

2This does not affect the competitive factor asymptotically.

B1

T1

EB1

B2
EB2

EB3

B3

T2 T3

2−k1

2−k2

2−k3

Figure 2: The first three squares of the sequence. In
this example, B2 is the smallest square that bounds
B1 from below. B3 is the smallest one that intersects
EB2 in an active slot (w.r.t. EB2) of width 1

2k2
. T2 is

nonactive (w.r.t. EB2) and, of course, also w.r.t. all
extension EBj , j ≥ 3

(ii) The number of active slots (w.r.t. EBj) of
width 2−kj is at most{

1 , for j = 1∏j
i=2(

1
2ki−1

2ki − 1) , for j ≥ 2

(iii) The area of the part of FB1 that lies in an
active slot of width 2−kj between EBj and EBj+1

is at most 2−kj |Bj+1| − 2|Bj+1|2.

We prove the claims by induction. If B1 is placed
on the bottom of S, FB1 has size 0 and B1 is the last
element of the sequence. Otherwise, the square B1

has at least one bottom neighbor, which is a candidate
for the choice of B2. If |B2| > 2−k1−1, then B2 is a
bottom neighbor of B1 of side length greater than or
equal to B1 and, thus, all points below are charged
to B2. Hence, slot T1 is nonactive and FB1 is of size
zero.

If (i) is fulfilled T1 is the only slot of width 2−k1 that
is active. Moreover, we conclude that the area of the
part of FB1 that lies between EB1 and EB2 is at most
2−k1 |B2|−2|B2|2 (Fig. 2). Note that we can subtract
the area of B2 twice, because BS

2 was defined to lie
completely inside a strip of width 2−k2+1 ≤ 2−k1 and
is of same area as B2.

Now suppose for a contradiction that the (j + 1)th
element does not exist for j +1 ≤ m. Let T ′ be an ac-
tive slot in T1 (w.r.t. EBj) of width 2−kj where EBj is
not intersected by a square in T ′. If there is an ε such
that for every point P ∈ (T ′ ∩ EBj) there is a point
P ′ at a distance of ε below P that is charged to B1 we

271

25th European Workshop on Computational Geometry, 2009

Bj

Tj

EBj

EBj+1

Bj+1 ≤ |Bj+1|
2kj

− 2|Bj+1|2

2−kj2−kj

Tj+1

2−kj+1

Figure 3: The part of FB1 (darkest gray) that lies
between EBj and EBj+1 in an active slot of width 1

2kj

is at most 1

2kj
|Bj+1|−2|Bj+1|2 because points in BW

j+1

are not charged to B1.

conclude that there would have been a better position
for Bj . Hence, there is at least one point, Q, below
EBj that is not charged to B1. Consider the bottom
sequence of the square Q is charged to. This sequence
has to intersect EBj

outside of T ′ (by choice of T ′).
But then one of its elements has to intersect the left
or the right boundary of T ′ and we can conclude that
this square has at least the width of T ′, because (by
the algorithm) a square with rounded side length 2−`

cannot cross a slot’s boundary of width larger than
2−`. In turn, a square larger than T ′ completely cov-
ers T ′ and T ′ cannot be active w.r.t. to EBj and B1.
Thus, all points in T ′ below EBj are charged to this
square; a contradiction. This proves the existence of
Bj+1. Because we chose Bj+1 to be of minimal side
length, |Bj+1| ≥ 2−kj would imply that all slots in-
side T are nonactive (w.r.t. EBj). Therefore, if Bj+1 is
not the last element of the sequence, |Bj+1| ≤ 2−kj−1

holds.
By the induction hypothesis there are at most

(1
2k1

2k2 − 1) · (1
2k2

2k3 − 1) · . . . · (1

2kj−2
2kj−1 − 1) active

slots of width 2−kj−1 (w.r.t. EBj−1). Each of these
slots contains 2kj−kj−1 slots of width 2−kj and in ev-
ery active slot of width 2−kj−1 at least one slot of
width 2−kj is nonactive because we chose Bj to be of
minimum side length. Hence, the number of active
slots (w.r.t. EBj) is a factor of (1

2kj−1
2kj − 1) larger

than the number of active slots (w.r.t. EBj−1).
Again by the choice of Bj+1 and by the fact that

in every active slot of width 2−kj there is at least
one square, B, intersecting EBj

(points below BW

are not charged to B1) we conclude that the area of
FB1 between EBj and EBj+1 is at most 2−kj |Bj+1| −
2|Bj+1|2 in every active slot of width 2−kj (Fig. 3).

Altogether, we get an upper bound on |FB1 | of

|B2|
2k1

−2|B2|2+
m∑

j=2

[(
|Bj+1|

2kj
−2|Bj+1|2

) j−1∏
i=1

(
2ki+1

2ki
−1

)]

This expression is maximized if we choose |Bi+1| =
1

2ki+2 for i = 1, . . . ,m. This implies ki = k1 + 2(i− 1)
and we get the upper bound

|FB1 | ≤
∞∑

i=0

3i

22k1+4i+3
.

The fraction |FB1 |
|B1|2 is maximized if we choose |B1|

as small as possible; that is, B1 = 2−(k1+1) + ε. We
conclude:

|FB1 |
|B1|2

≤
∞∑

i=0

22k1+2 · 3i

22k1+4i+3
=

∞∑
i=0

3i

24i+1

=
1
2
·
∞∑

i=0

(
3
16

)i

=
8
13

= 0.6154...

�

5 Conclusion

We presented an algorithm that is 2.6154-competitive.
We believe that our algorithm can be improved; at
this point, the best known lower bound is 1.25. We
believe that our approach can be extended to higher
dimensions. Rectangles may require a slightly differ-
ent analysis. These topics will be the subject of future
research. It is an open question, whether our analysis
is tight or can be improved. The best lower bound for
SlotAlgorithm known to us is 2.

References

[1] Y. Azar and L. Epstein. On two dimensional packing.
J. Algorithms, 25:290–310, 1997.

[2] B. S. Baker and J. S. Schwarz. Shelf algorithms for
two-dimensional packing problems. SIAM J. Comput.,
12:508–525, 1983.

[3] R. Breukelaar, E. D. Demaine, S. Hohenberger, H. J.
Hoogeboom, W. A. Kosters, and D. Liben-Nowell.
Tetris is hard, even to approximate. Internat. J. Com-
put. Geom. Appl., 14:41–68, 2004.

[4] E. G. Coffman Jr., P. J. Downey, and P. Winkler.
Packing rectangles in a strip. Acta Inform., 38:673–
693, 2002.

[5] J. Csirik and G. J. Woeginger. Shelf algorithms for
online strip packing. Inform. Proc. Let., 63:171–175,
1997.

[6] L. Epstein and R. van Stee. Optimal online bounded
space multidimensional packing. In Proc. 15th ACM-
SIAM Sympos. Discrete Algorithms, pages 214–223,
2004.

[7] L. Epstein and R. van Stee. Online square and cube
packing. Acta Inform., 41:595–606, 2005.

[8] S. P. Fekete, J. Schepers, and J. van der Veen. An ex-
act algorithm for higher-dimensional orthogonal pack-
ing. Operations Research, 55:569–587, 2007.

272

