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What is the Pledge algorithm?

Given

• A robot

• Touch sensor

• Angle counter

• Move straight forward

• Follow wall

• A maze (set of polygons)

Task

• Leave the maze

s
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The Pledge algorithm

repeat
ω = 0
repeat

Move in direction ω in the free space

until Robot hits an obstacle

repeat

Follow the wall in counter-clockwise direction

Count the overall turning angle in ω

until Angle Counter ω = 0
until Robot is outside the maze

R
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http://web.cs.uni-bonn.de/I/GeomLab/
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http://web.cs.uni-bonn.de/I/GeomLab/
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Why reconsidered?

Robotics:

⊕ Real robots

⊕ Consider errors in movement,
sensors, computation

� Heuristic algorithms,
statistical analysis

⇒ No guarantees

Computational geometry:

⊕ Provable correctness,
performance guarantees

� Idealistic assumptions
(robot is error-free,
robot is point-shaped)

⇒ Not implementable

Goal: Combine both approaches.
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Correctness

Theorem 1. (Abelson, diSessa, 1980)

A robot will leave an unknown polygonal maze, provided that

there is an exit.

The proof relys on the assumptions:

• Robot is point-shaped

• Angle-counter is correct

• Straight motion is correct

But: What happens, if these assumptions cannot be fulfilled?
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Idea

• Define a class K of curves in the

robot’s workspace

• C ∈ K represents possible path to

an exit

• Robot will escape, if its strategy

follows a C ∈ K

• Find sufficient conditions for curves

in K R

Obstacle

C ∈ K
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Preliminaries (1)

• Workspace C = IR × IR × IR

• Curve C(t) = (P (t), ϕ(t))

Position P (t) = (X(t), Y (t))

Heading ϕ(t) ∈ IR (!)

R

ϕ(t2) = 4π

ϕ(t1) = 0

t2

t1
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Preliminaries (2)

Points in the plane:

• Forbidden configuration (Cforb):

robot intersects obstacle

• Half-free configuration (Chalf):

robot touches obstacle

• Free configuration (Cfree):

neither intersects nor touches

R
free

half−free

Obstacle

forbidden
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Preliminaries (3)

• Curve hits obstacle:

Hit–Point Hi

• Curve leaves obstacle:

Leave–Point Li

Li+1

Hi+1

Hi

Li
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Types of errors

Types of movements in the

pledge algorithm:

• straight motion through

the free space

• following an obstacle wall

while counting turning

angles

Both types of movements

may be afflicted with error.
missed

motion
No straight

Leave point
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Free space condition

s

• Small deviations in the free space can sum up to big mistake

• Curve has to stay in a wedge around the initial direction

• ∀t1, t2 ∈ C : P (t1), P (t2) ∈ Cfree ⇒ |ϕ(t1) − ϕ(t2)| < π
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Obstacle condition

• Leave point is missed

• ⇒ angle counter ’overwinded’

• ∀Hi, t ∈ C :
P (t) = P (Hi)
⇒ ϕ(t) − ϕ(Hi) < π

ϕ(tk) > π

tk
Hi

q

Hk

s

p

0

+π
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Sufficient conditions

Definition 2. Let K be the class of curves in Cfree ∪ Chalf that

satisfy the following conditions:

(i) The curve circles an obstacle in a counter-clockwise

direction.

(ii) Every leave point belongs to a vertex of an obstacle.

(iii) Free space condition:

∀t1, t2 ∈ C : P (t1), P (t2) ∈ Cfree ⇒ |ϕ(t1) − ϕ(t2)| < π

(iv) Obstacle condition:

∀Hi, t ∈ C : P (t) = P (Hi) ⇒ ϕ(t) − ϕ(Hi) < π
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No crossings

Lemma 3. A curve C ∈ K cannot cross itself.

no crossing, just touchingcrossing
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Proof, counterclockwise loop

P (t1) = P (t2)P (t1) = P (t2) ϕ(Hi) := 0

ti
Hi

Hk
Hi

γ

P (Hi) is met again at ti > Hi

1) Full turn ⇒ ϕ(ti) − γ = 2π

2) Turning angle −π < γ < 0
⇒ ϕ(ti) − ϕ(Hi) > π �

P (Hi) is not met again

⇒ no crossing

The pledge algorithm reconsidered 17



Only one hit per edge

Lemma 4. A curve C ∈ K will hit every edge in the

environment at most once.

Proof: Assume C hits e twice.
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Proof (1)

ϕ(H+
i ) := 0

�

e

γi γk

� Hk
Hk

γk γi

e
Hi Hi

• Heading after the robot turns: ϕ(H+
i/k) := ϕ(Hi/k) + γi/k

• Turning angles: −π < γi, γk < 0

• Curve follows e ⇒ ϕ(H+
k ) = 2kπ, k ∈ ZZ

• k �= 0 ⇒ |ϕ(Hk) − ϕ(Hi)| = |2kπ − γk + γi| > π �
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Proof (2)

ϕ(H+
i ) := 0

�

e

γi γk

� Hk
Hk

γk γi

e
Hi Hi

• k = 0 ⇒ ϕ(H+
k ) = 0

• Loop has no crossings

⇒ ±2π turn in loop �

⇒ ϕ(H+
k ) = ±2π �
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Main theorem

Theorem 5. A robot, whose path follows a curve C ∈ K,

will escape from an unknown maze, if this is possible at all.

Proof.

• Curve hits every edge at most once

• After the curve has visited every edge, the robot must escape

or there is no exit

�
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Conclusion (1)

• Robot is able to move straight forward exactly

• β := maximal difference between real angle and measured

angle

• n := Number of edges in the environment

• Robot escapes, if

|β| <
π

n2
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Conclusion (2)

• ”Almost rectangular” environment

• Strategy: just count

convex/concave vertices

• Robot escapes, if it guarantees its

heading in the free space up to an

angle α

• α depends on the deviations from

the exact rectangular environment +1

−1

+1

−1
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Thank you!
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Obstacle Condition (2)

• Leave point is missed

• ϕ(tk) = π
2

• ϕ(Hk) < −π
2

• Both errors sum up to > π

• ∀Hi, t ∈ C :
P (t) = P (Hi)
⇒ ϕ(t) − ϕ(Hi) < π

Lk

ϕ(tk) = π
2

ϕ(Hk) < −π
2

tk

Hk

p

s
Hi

0
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Proof, clockwise loop (1)

• ϕ(H+
k ) = ϕ(Hk) + γ

• −π < γ < 0

• P (Hk) was already met

⇒ Full turn: ϕ(H+
k ) = ϕ(tk) − 2π

• Obstacle Condition:

ϕ(tk) − ϕ(Hk) < π

⇔ ϕ(H+
k ) + 2π − ϕ(Hk) < π

⇔ ϕ(Hk) + γ + 2π − ϕ(Hk) < π

⇔ γ < −π � = P (t2)

Hk
tk

P (t1)

γ

Hiϕ(Hi) := 0
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Proof, clockwise loop (2)

• P (Hk) was not met before

• ⇒ no crossing

P (t1)

Hk

γ

= P (t2)

Hi
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Following a curve

s

’Escaped’

Π

C

Corollary 6. A robot escapes, if ∃C ∈ K, such that the

sequence of hit points of C is a subsequence of the hit points

generated by the robot’s strategy.
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