The pledge algorithm reconsidered under errors in sensors and motion

Tom Kamphans Elmar Langetepe

University of Bonn Dept. of Computer Science I Bonn, Germany

What is the Pledge algorithm?

Given

- A robot
 - Touch sensor
 - Angle counter
 - Move straight forward
 - Follow wall
- A maze (set of polygons)

Task

• Leave the maze

The Pledge algorithm

repeat

 $\omega = 0$

repeat

Move in direction ω in the free space **until** Robot hits an obstacle

repeat

Follow the wall in counter-clockwise direction

Count the overall turning angle in ω

until Angle Counter $\omega=0$

until Robot is outside the maze

http://web.cs.uni-bonn.de/I/GeomLab/

The pledge algorithm reconsidered

http://web.cs.uni-bonn.de/I/GeomLab/

The pledge algorithm reconsidered

http://web.cs.uni-bonn.de/I/GeomLab/

The pledge algorithm reconsidered

4

Why reconsidered?

Robotics:

- \oplus Real robots
- Consider errors in movement, sensors, computation
- ⊖ Heuristic algorithms, statistical analysis
- \Rightarrow No guarantees

Computational geometry:

- Provable correctness,performance guarantees
- ⊖ Idealistic assumptions (robot is error-free, robot is point-shaped)
- $\Rightarrow \ \mathsf{Not} \ \mathsf{implementable}$

Goal: Combine both approaches.

Correctness

Theorem 1. (Abelson, diSessa, 1980) A robot will leave an unknown polygonal maze, provided that there is an exit.

The proof relys on the assumptions:

- Robot is point-shaped
- Angle-counter is correct
- Straight motion is correct

But: What happens, if these assumptions cannot be fulfilled?

The pledge algorithm reconsidered

Idea

- \bullet Define a class ${\cal K}$ of curves in the robot's workspace
- $C \in \mathcal{K}$ represents possible path to an exit
- Robot will escape, if its strategy follows a $C \in \mathcal{K}$
- \bullet Find sufficient conditions for curves in ${\cal K}$

Preliminaries (1)

$$t_{2} \bullet \varphi(t_{2}) = 4\pi$$

$$t_{1} \bullet \varphi(t_{1}) = 0$$

• Workspace
$$\mathcal{C} = \mathrm{I\!R} \times \mathrm{I\!R} \times \mathrm{I\!R}$$

• Curve
$$C(t) = (P(t), \varphi(t))$$

Position P(t) = (X(t), Y(t))

Heading $\varphi(t) \in \mathbb{R}$ (!)

Points in the plane:

- Forbidden configuration (C_{forb}) : robot intersects obstacle
- Half-free configuration (C_{half}) : robot touches obstacle
- Free configuration (C_{free}) : neither intersects nor touches

Preliminaries (2)

Preliminaries (3)

- Curve hits obstacle: *Hit–Point* H_i
- Curve leaves obstacle: *Leave–Point* L_i

Types of errors

Types of movements in the pledge algorithm:

- straight motion through the free space
- following an obstacle wall while counting turning angles

Both types of movements may be afflicted with error.

Free space condition

- Small deviations in the free space can sum up to big mistake
- Curve has to stay in a wedge around the initial direction
- $\forall t_1, t_2 \in C : P(t_1), P(t_2) \in \mathcal{C}_{\text{free}} \Rightarrow |\varphi(t_1) \varphi(t_2)| < \pi$

Obstacle condition

- Leave point is missed
- \Rightarrow angle counter 'overwinded'

•
$$\forall H_i, t \in C$$
:
 $P(t) = P(H_i)$
 $\Rightarrow \varphi(t) - \varphi(H_i) < \pi$

Sufficient conditions

Definition 2. Let \mathcal{K} be the class of curves in $\mathcal{C}_{free} \cup \mathcal{C}_{half}$ that satisfy the following conditions:

- *(i)* The curve circles an obstacle in a counter-clockwise direction.
- (ii) Every leave point belongs to a vertex of an obstacle.(iii) Free space condition:

$$\forall t_1, t_2 \in C : P(t_1), P(t_2) \in \mathcal{C}_{\text{free}} \Rightarrow |\varphi(t_1) - \varphi(t_2)| < \pi$$

(iv) Obstacle condition:

$$\forall H_i, t \in C : P(t) = P(H_i) \Rightarrow \varphi(t) - \varphi(H_i) < \pi$$

No crossings

Lemma 3. A curve $C \in \mathcal{K}$ cannot cross itself.

Only one hit per edge

Lemma 4. A curve $C \in \mathcal{K}$ will hit every edge in the environment at most once.

Proof: Assume C hits e twice.

Proof (1)

- Heading after the robot turns: $\varphi(H_{i/k}^+) := \varphi(H_{i/k}) + \gamma_{i/k}$
- Turning angles: $-\pi < \gamma_i, \gamma_k < 0$
- Curve follows $e \Rightarrow \varphi(H_k^+) = 2k\pi, k \in \mathbb{Z}$
- $k \neq 0 \Rightarrow |\varphi(H_k) \varphi(H_i)| = |2k\pi \gamma_k + \gamma_i| > \pi \notin$

Proof (2)

- $k = 0 \Rightarrow \varphi(H_k^+) = 0$
- Loop has no crossings
 - $\Rightarrow \pm 2\pi$ turn in loop ℓ

$$\Rightarrow \varphi(H_k^+) = \pm 2\pi \not \Rightarrow$$

Main theorem

Theorem 5. A robot, whose path follows a curve $C \in \mathcal{K}$, will escape from an unknown maze, if this is possible at all.

Proof.

- Curve hits every edge at most once
- After the curve has visited every edge, the robot must escape or there is no exit

Conclusion (1)

- Robot is able to move straight forward exactly
- $\beta := \max {\rm imal}$ difference between real angle and measured angle
- n := Number of edges in the environment
- Robot escapes, if

$$|\beta| < \frac{\pi}{n^2}$$

The pledge algorithm reconsidered

Conclusion (2)

- "Almost rectangular" environment
- Strategy: just count convex/concave vertices
- Robot escapes, if it guarantees its heading in the free space up to an -1 angle α
- α depends on the deviations from the exact rectangular environment

Thank you!

Obstacle Condition (2)

- Leave point is missed
- $\varphi(t_k) = \frac{\pi}{2}$
- $\varphi(H_k) < -\frac{\pi}{2}$
- Both errors sum up to $> \pi$

•
$$\forall H_i, t \in C$$
:
 $P(t) = P(H_i)$
 $\Rightarrow \varphi(t) - \varphi(H_i) < \pi$

Proof, clockwise loop (1)

- $\varphi(H_k^+) = \varphi(H_k) + \gamma$
- $\bullet \ -\pi < \gamma < 0$
- $P(H_k)$ was already met \Rightarrow Full turn: $\varphi(H_k^+) = \varphi(t_k) - 2\pi$
- Obstacle Condition: $\varphi(t_k) - \varphi(H_k) < \pi$ $\Leftrightarrow \varphi(H_k^+) + 2\pi - \varphi(H_k) < \pi$ $\Leftrightarrow \varphi(H_k) + \gamma + 2\pi - \varphi(H_k) < \pi$ $\Leftrightarrow \gamma < -\pi \not>$

Proof, clockwise loop (2)

 H_k H $P(t_1) \searrow = P(t_2)$

- $P(H_k)$ was not met before
- \Rightarrow no crossing

Following a curve

Corollary 6. A robot escapes, if $\exists C \in \mathcal{K}$, such that the sequence of hit points of C is a subsequence of the hit points generated by the robot's strategy.