The pledge algorithm reconsidered under errors in sensors and motion

Tom Kamphans Elmar Langetepe

University of Bonn
Dept. of Computer Science I
Bonn, Germany

What is the Pledge algorithm?

Given

- A robot
- Touch sensor
- Angle counter
- Move straight forward
- Follow wall
- A maze (set of polygons)

Task

- Leave the maze

The Pledge algorithm

repeat

$$
\omega=0
$$

repeat
Move in direction ω in the free space
until Robot hits an obstacle
repeat
Follow the wall in counter-clockwise direction Count the overall turning angle in ω

until Angle Counter $\omega=0$
until Robot is outside the maze

http://web.cs.uni-bonn.de/I/GeomLab/

http://web.cs.uni-bonn.de/I/GeomLab/

The pledge algorithm reconsidered

http://web.cs.uni-bonn.de/I/GeomLab/

The pledge algorithm reconsidered

Why reconsidered?

Robotics:

\oplus Real robots
\oplus Consider errors in movement, sensors, computation
\ominus Heuristic algorithms, statistical analysis

Computational geometry:
\oplus Provable correctness, performance guarantees
\ominus Idealistic assumptions (robot is error-free, robot is point-shaped)
\Rightarrow Not implementable
\Rightarrow No guarantees

Goal: Combine both approaches.

Correctness

Theorem 1. (Abelson, diSessa, 1980)
A robot will leave an unknown polygonal maze, provided that there is an exit.

The proof relys on the assumptions:

- Robot is point-shaped
- Angle-counter is correct
- Straight motion is correct

But: What happens, if these assumptions cannot be fulfilled?

Idea

- Define a class \mathcal{K} of curves in the robot's workspace
- $C \in \mathcal{K}$ represents possible path to an exit
- Robot will escape, if its strategy follows a $C \in \mathcal{K}$
- Find sufficient conditions for curves in \mathcal{K}

Preliminaries (1)

- Workspace $\mathcal{C}=\mathbb{R} \times \mathbb{R} \times \mathbb{R}$
- Curve $C(t)=(P(t), \varphi(t))$

Position $P(t)=(X(t), Y(t))$
Heading $\varphi(t) \in \mathbb{R}(!)$

Preliminaries (2)

Points in the plane:

- Forbidden configuration $\left(\mathcal{C}_{\text {forb }}\right)$: robot intersects obstacle
- Half-free configuration $\left(\mathcal{C}_{\text {half }}\right)$: robot touches obstacle
- Free configuration $\left(\mathcal{C}_{\text {free }}\right)$: neither intersects nor touches

Preliminaries (3)

- Curve hits obstacle: Hit-Point H_{i}
- Curve leaves obstacle: Leave-Point L_{i}

Types of errors

Types of movements in the pledge algorithm:

- straight motion through the free space
- following an obstacle wall while counting turning angles

Both types of movements
 may be afflicted with error.

Free space condition

- Small deviations in the free space can sum up to big mistake
- Curve has to stay in a wedge around the initial direction
- $\forall t_{1}, t_{2} \in C: P\left(t_{1}\right), P\left(t_{2}\right) \in \mathcal{C}_{\text {free }} \Rightarrow\left|\varphi\left(t_{1}\right)-\varphi\left(t_{2}\right)\right|<\pi$

Obstacle condition

- Leave point is missed
- \Rightarrow angle counter 'overwinded'
- $\forall H_{i}, t \in C$:

$$
\begin{aligned}
& P(t)=P\left(H_{i}\right) \\
& \Rightarrow \varphi(t)-\varphi\left(H_{i}\right)<\pi
\end{aligned}
$$

Sufficient conditions

Definition 2. Let \mathcal{K} be the class of curves in $\mathcal{C}_{\text {free }} \cup \mathcal{C}_{\text {half }}$ that satisfy the following conditions:
(i) The curve circles an obstacle in a counter-clockwise direction.
(ii) Every leave point belongs to a vertex of an obstacle.
(iii) Free space condition:

$$
\forall t_{1}, t_{2} \in C: P\left(t_{1}\right), P\left(t_{2}\right) \in \mathcal{C}_{\text {free }} \Rightarrow\left|\varphi\left(t_{1}\right)-\varphi\left(t_{2}\right)\right|<\pi
$$

(iv) Obstacle condition:

$$
\forall H_{i}, t \in C: P(t)=P\left(H_{i}\right) \Rightarrow \varphi(t)-\varphi\left(H_{i}\right)<\pi
$$

No crossings

Lemma 3. A curve $C \in \mathcal{K}$ cannot cross itself.
crossing

no crossing, just touching

Proof, counterclockwise loop

$P\left(H_{i}\right)$ is met again at $t_{i}>H_{i}$
$P\left(H_{i}\right)$ is not met again

1) Full turn $\Rightarrow \varphi\left(t_{i}\right)-\gamma=2 \pi$
2) Turning angle $-\pi<\gamma<0 \quad \Rightarrow$ no crossing

$$
\Rightarrow \varphi\left(t_{i}\right)-\varphi\left(H_{i}\right)>\pi
$$

Only one hit per edge

Lemma 4. A curve $C \in \mathcal{K}$ will hit every edge in the environment at most once.

Proof: Assume C hits e twice.

Proof (1)

- Heading after the robot turns: $\varphi\left(H_{i / k}^{+}\right):=\varphi\left(H_{i / k}\right)+\gamma_{i / k}$
- Turning angles: $-\pi<\gamma_{i}, \gamma_{k}<0$
- Curve follows $e \Rightarrow \varphi\left(H_{k}^{+}\right)=2 k \pi, k \in \mathbb{Z}$
- $k \neq 0 \Rightarrow\left|\varphi\left(H_{k}\right)-\varphi\left(H_{i}\right)\right|=\left|2 k \pi-\gamma_{k}+\gamma_{i}\right|>\pi$ 々

- $k=0 \Rightarrow \varphi\left(H_{k}^{+}\right)=0$
- Loop has no crossings

$$
\begin{aligned}
& \Rightarrow \pm 2 \pi \text { turn in loop } \ell \\
& \Rightarrow \varphi\left(H_{k}^{+}\right)= \pm 2 \pi
\end{aligned}
$$

Main theorem

Theorem 5. A robot, whose path follows a curve $C \in \mathcal{K}$, will escape from an unknown maze, if this is possible at all. Proof.

- Curve hits every edge at most once
- After the curve has visited every edge, the robot must escape or there is no exit

Conclusion (1)

- Robot is able to move straight forward exactly
- $\beta:=$ maximal difference between real angle and measured angle
- $n:=$ Number of edges in the environment
- Robot escapes, if

$$
|\beta|<\frac{\pi}{n^{2}}
$$

Conclusion (2)

- "Almost rectangular" environment
- Strategy: just count convex/concave vertices
- Robot escapes, if it guarantees its heading in the free space up to an angle α
- α depends on the deviations from the exact rectangular environment

Thank you!

Obstacle Condition (2)

- Leave point is missed
- $\varphi\left(t_{k}\right)=\frac{\pi}{2}$
- $\varphi\left(H_{k}\right)<-\frac{\pi}{2}$
- Both errors sum up to $>\pi$
- $\forall H_{i}, t \in C$:

$$
\begin{aligned}
& P(t)=P\left(H_{i}\right) \\
& \Rightarrow \varphi(t)-\varphi\left(H_{i}\right)<\pi
\end{aligned}
$$

$$
\begin{aligned}
& \varphi\left(t_{k}\right)=\frac{\pi}{2} \\
& \varphi\left(H_{k}\right)<-\frac{\pi}{2}
\end{aligned}
$$

Proof, clockwise loop (1)

- $\varphi\left(H_{k}^{+}\right)=\varphi\left(H_{k}\right)+\gamma$
- $-\pi<\gamma<0$
- $P\left(H_{k}\right)$ was already met
\Rightarrow Full turn: $\varphi\left(H_{k}^{+}\right)=\varphi\left(t_{k}\right)-2 \pi$
- Obstacle Condition:

$$
\begin{aligned}
& \varphi\left(t_{k}\right)-\varphi\left(H_{k}\right)<\pi \\
& \Leftrightarrow \varphi\left(H_{k}^{+}\right)+2 \pi-\varphi\left(H_{k}\right)<\pi \\
& \Leftrightarrow \varphi\left(H_{k}\right)+\gamma+2 \pi-\varphi\left(H_{k}\right)<\pi \\
& \Leftrightarrow \gamma<-\pi
\end{aligned}
$$

Proof, clockwise loop (2)

- $P\left(H_{k}\right)$ was not met before
- \Rightarrow no crossing

Following a curve

Corollary 6. A robot escapes, if $\exists C \in \mathcal{K}$, such that the sequence of hit points of C is a subsequence of the hit points generated by the robot's strategy.

