Exploring Simple Grid Polygons

Christian Icking ${ }^{1}$ Tom Kamphans ${ }^{2}$ Rolf Klein ${ }^{2}$ Elmar Langetepe ${ }^{2}$

${ }^{1}$ University of Hagen, Praktische Informatik VI, Hagen, Germany.
${ }^{2}$ University of Bonn, Computer Science I, Bonn, Germany.

29th August 2005

The Problem

- Robot, R, has to explore an unknown environment, P - More precisely, find a tour that
- For example: lawn mowing, cleaning

The Problem

- Robot, R, has to explore an unknown environment, P
- More precisely, find a tour that
- visits every part of P at least once
- returns to the robot's start point
- can be computed online
- is as short as possible
- For example: lawn mowing, cleaning

The Problem

- Robot, R, has to explore an unknown environment, P
- More precisely, find a tour that
- visits every part of P at least once
- returns to the robot's start point
- can be computed online
- is as short as possible
- For example: lawn mowing, cleaning

The Problem

- Robot, R, has to explore an unknown environment, P
- More precisely, find a tour that
- visits every part of P at least once
- returns to the robot's start point
- can be computed online
- is as short as possible
- For example: lawn mowing, cleaning

The Problem

- Robot, R, has to explore an unknown environment, P
- More precisely, find a tour that
- visits every part of P at least once
- returns to the robot's start point
- can be computed online
- is as short as possible
- For example: lawn mowing, cleaning

The Problem

- Robot, R, has to explore an unknown environment, P
- More precisely, find a tour that
- visits every part of P at least once
- returns to the robot's start point
- can be computed online
- is as short as possible
- For example: lawn mowing, cleaning

Environment and Robot

Grid polygon:

- Environment is subdivided by an integer grid
- Simple \Rightarrow No holes

Robot

- No vision
- Can sense 4 adjacent cells
- Can enter adjacent, free cell

Environment and Robot

Grid polygon:

- Environment is subdivided by an integer grid

- Simple \Rightarrow No holes

Robot

- No vision
- Can sense 4 adjacent cells
- Can enter adjacent, free cell

Environment and Robot

Grid polygon:

- Environment is subdivided by an integer grid
- Simple \Rightarrow No holes

Robot

- No vision
- Can sense 4 adjacent cells
- Can enter adjacent, free cell

Environment and Robot

Grid polygon:

- Environment is subdivided by an integer grid
- Simple \Rightarrow No holes

Robot

- No vision
- Can sense 4 adjacent cells
- Can enter adjacent, free cell

Environment and Robot

Grid polygon:

- Environment is subdivided by an integer grid
- Simple \Rightarrow No holes

Robot

- No vision
- Can sense 4 adjacent cells
- Can enter adjacent, free cell

Environment and Robot

Grid polygon:

- Environment is subdivided by an integer grid
- Simple \Rightarrow No holes Robot
- No vision
- Can sense 4 adjacent cells
- Can enter adjacent, free cell

Environment and Robot

Grid polygon:

- Environment is subdivided by an integer grid
- Simple \Rightarrow No holes

Robot

- No vision
- Can sense 4 adjacent cells
- Can enter adjacent, free cell

Environment and Robot

Grid polygon:

- Environment is subdivided by an integer grid
- Simple \Rightarrow No holes

Robot

- No vision
- Can sense 4 adjacent cells
- Can enter adjacent, free cell

Environment and Robot

Grid polygon:

- Environment is subdivided by an integer grid
- Simple \Rightarrow No holes

Robot

- No vision
- Can sense 4 adjacent cells
- Can enter adjacent, free cell

Previous Work

Offline (i. e., environment is known to the robot)

- With holes:

NP-hard [Itai, Papadimitriou, Szwarcfiter; 1982]

- Without holes:
$\frac{4}{3}$-approximation [Ntafos; 1992]
$\frac{6}{5}$-approximation [Arkin, Fekete, Mitchell; 2000]

Previous Work

Offline (i. e., environment is known to the robot)

- With holes:

NP-hard [Itai, Papadimitriou, Szwarcfiter; 1982]

- Without holes:
$\frac{4}{3}$-approximation [Ntafos; 1992]
$\frac{6}{5}$-approximation [Arkin, Fekete, Mitchell; 2000]

Online

- With holes:
[Icking, Kamphans, Klein, Langetepe; 2000] [Gabriely, Rimon; 2000]

Why Simple Polygons?

Theorem (IKKL; 2000)

Lower bound on the online exploration of grid polygons with holes: 2.

Theorem
 There is a^{4}-competitive online exploration strategy for polygons without holes.

Why Simple Polygons?

Theorem (IKKL; 2000)

Lower bound on the online exploration of grid polygons with holes: 2.

Theorem

There is a $\frac{4}{3}$-competitive online exploration strategy for polygons without holes.

Theorem
No online exploration strategy achieves a factor better than $\frac{7}{6}$ in simple grid polygon.

$\stackrel{s}{\triangleright}$

w. I. o. g.: East

Proof: Lower Bound

South or East

$$
\nabla^{s} \longrightarrow \sqrt{s \rightarrow}
$$

Proof: Lower Bound

Close Polygon

$$
\nabla^{s} \longrightarrow \sqrt{s} \rightarrow^{s}
$$

Online vs. Optimal

$$
\nabla^{s} \longrightarrow \sqrt{s} \rightarrow^{s}
$$

8/6

Proof: Lower Bound

3 Possibilities:

$$
\nabla^{s} \longrightarrow \sqrt{s \rightarrow}^{s}
$$

8/6

Proof: Lower Bound

3 Possibilities: South,

8/6

Proof: Lower Bound

3 Possibilities: South, East,

8/6

Proof: Lower Bound

3 Possibilities: South, East, North

8/6

Proof: Lower Bound

Close Polygon

8/6

Proof: Lower Bound

Online vs. Optimal

$$
\nabla^{s} \longrightarrow{ }^{s \rightarrow}
$$

Proof: Lower Bound

Close Polygon

$$
\nabla^{s} \longrightarrow \sqrt{s \rightarrow}
$$

Proof: Lower Bound

Online vs. Optimal

$$
\nabla^{s} \longrightarrow{ }^{s \rightarrow}
$$

Proof: Lower Bound

Polygons of arbitrary size

$$
\nabla^{s} \longrightarrow \sqrt{s \rightarrow}
$$

- First idea: Apply depth-first search (DFS)
- Left-hand rule: prefer step to the left over a straight step over a step to the right - Visits each cell twice!
- First idea: Apply depth-first search (DFS)
- Left-hand rule: prefer step to the left over a straight step over a step to the right

- Visits each cell twice!

- First idea: Apply depth-first search (DFS)
- Left-hand rule: prefer step to the left over a straight step over a step to the right
- Visits each cell twice!

SmartDFS: An exploration strategy (2)

- DFS visits each cell twice
- More reasonable: Return directly to unvisited cell
- Improved DFS

Improvement
 Return directly to those cells that have unexplored neighbors.

SmartDFS: An exploration strategy (2)

- DFS visits each cell twice
- More reasonable: Return directly to unvisited cell
- Improved DFS

Improvement 1
 Return directly to those cells that have unexplored neighbors.

SmartDFS: An exploration strategy (2)

- DFS visits each cell twice
- More reasonable: Return directly to unvisited cell
- Improved DFS

Improvement 1
 Return directly to those cells that have unexplored neighbors.

SmartDFS: An exploration strategy (2)

- DFS visits each cell twice
- More reasonable: Return directly to unvisited cell
- Improved DFS

Improvement 1
 Return directly to those cells that have unexplored neighbors.

SmartDFS: An exploration strategy (2)

- DFS visits each cell twice
- More reasonable: Return directly to unvisited cell
- Improved DFS

Improvement 1

Return directly to those cells that have unexplored neighbors.

SmartDFS: An exploration strategy (3)

- DFS visits long corridor four times
- More reasonable:
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

improvement 2

Detect and handle split cells (i. e., prefer parts of P farther away from the start).

- DFS visits long corridor four times
- More reasonable:
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2

Detect and handle split cells (i. e., prefer parts of P farther away from the start).

SmartDFS: An exploration strategy (3)

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2

Detect and handle split cells (i. e., prefer parts of P farther away from the start).

SmartDFS: An exploration strategy (3)

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2

Detect and handle split cells (i. e., prefer parts of P farther away from the start)

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2

Detect and handle split cells (i. e., prefer parts of P farther away from the start).

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2

Detect and handle split cells (i. e., prefer parts of P farther away from the start),

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2

Detect and handle split cells (i. e., prefer parts of P farther away from the start)

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2

Detect and handle split cells (i. e., prefer parts of P farther away from the start)

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected
\square
improvement 2
Detect and handle split cells (i. e., prefer parts of P farther away from the start)

SmartDFS: An exploration strategy (3)

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2

Detect and handle split cells (i.e., prefer parts of P farther away from the start).

Java Applet

http://www.geometrylab.de/Gridrobot/

Layer and Offset

- First layer := Boundary cells of P - 1-offset:= P without first layer
- Analogously: Second layer
- 2-offset
- and so on
- E: \#edges between free and blocked cells

Lemma (Number of edges)
 P^{\prime} is ℓ-offset of $P \Rightarrow E\left(P^{\prime}\right) \leq E(P)-8 \ell$.

Layer and Offset

- First layer := Boundary cells of P
- 1-offset P without first layer
- Analogously: Second layer
- 2-offset
- and so on
- E: \#edges between free and blocked cells

Lemma (Number of edges)
 P^{\prime} is ℓ-offset of $P \Rightarrow E\left(P^{\prime}\right) \leq E(P)-8 \ell$.

Layer and Offset

- First layer := Boundary cells of P
- 1-offset:=
P without first layer
- Analogously: Second layer
- 2-offset
- and so on
- E: \#edges between free and blocked cells

Lemma (Number of edges)
 P^{\prime} is ℓ-offset of $P \Rightarrow E\left(P^{\prime}\right) \leq E(P)-8 \ell$.

Layer and Offset

- First layer := Boundary cells of P
- 1-offset:=
P without first layer
- Analogously: Second layer
- 2-offset
- and so on
- E: \#edges between free and blocked cells

Lemma (Number of edges)
 P^{\prime} is ℓ-offset of $P \Rightarrow E\left(P^{\prime}\right) \leq E(P)-8 \ell$.

Layer and Offset

- First layer := Boundary cells of P
- 1-offset:=
P without first layer
- Analogously: Second layer
- 2-offset
- and so on
- E: \#edges between free and blocked cells

Lemma (Number of edges)
 P^{\prime} is ℓ-offset of $P \Rightarrow E\left(P^{\prime}\right) \leq E(P)-8 \ell$.

Layer and Offset

- First layer := Boundary cells of P
- 1-offset:=
P without first layer
- Analogously: Second layer
- 2-offset
- and so on
- E: \#edges between free and blocked cells

Lemma (Number of edges)
 P^{\prime} is ℓ-offset of $P \Rightarrow E\left(P^{\prime}\right) \leq E(P)-8 \ell$.

Layer and Offset

- First layer := Boundary cells of P
- 1-offset:=
P without first layer
- Analogously: Second layer
- 2-offset
- and so on
- E: \#edges between free and blocked cells
\square
Lemma (Number of edges)
P^{\prime} is ℓ-offset of $P \Rightarrow E\left(P^{\prime}\right) \leq E(P)-8 \ell$.

Layer and Offset

- First layer := Boundary cells of P
- 1-offset:=
P without first layer
- Analogously: Second layer
- 2-offset
- and so on
- E: \#edges between free and blocked cells

Lemma (Number of edges)
 P^{\prime} is ℓ-offset of $P \Rightarrow E\left(P^{\prime}\right) \leq E(P)-8 \ell$.

Shortest Paths Lengths

Lemma (Shortest Path)

Shortest path between two cells in $P \leq \frac{1}{2} E(P)-2$.

Proof sketch.

Shortest Paths Lengths

Lemma (Shortest Path)

Shortest path between two cells in $P \leq \frac{1}{2} E(P)-2$.

Proof sketch.

- Worst case:

Both cells in the first layer

- \#cells in the first layer
\leq \#edges - 4

Shortest Paths Lengths

Lemma (Shortest Path)

Shortest path between two cells in $P \leq \frac{1}{2} E(P)-2$.

Proof sketch.

- Worst case:

Both cells in the first layer

$\left|\pi_{\mathrm{cw}}=\right| T_{\mathrm{ccw}}$ $=\frac{1}{2} \cdot$ \#cells in the first layer
 - \#cells in the first layer

\leq \#edges - 4

Shortest Paths Lengths

Lemma (Shortest Path)

Shortest path between two cells in $P \leq \frac{1}{2} E(P)-2$.

Proof sketch.

π_{cw}

- Worst case:

Both cells in the first layer

- $\left|\pi_{\mathrm{cw}}\right|=\left|\pi_{\mathrm{ccw}}\right|$
$=\frac{1}{2} \cdot$ \#cells in the first layer
- \#cells in the first layer
\leq \#edges - 4

Shortest Paths Lengths

Lemma (Shortest Path)

Shortest path between two cells in $P \leq \frac{1}{2} E(P)-2$.

Proof sketch.

- Worst case:

Both cells in the first layer

- $\left|\pi_{\mathrm{cw}}\right|=\left|\pi_{\mathrm{ccw}}\right|$
$=\frac{1}{2} \cdot$ \#cells in the first layer
- \#cells in the first layer
\leq \#edges - 4

Upper for the Number of Steps (1)

Theorem (Number of Steps)

$$
S \leq C+\frac{1}{2} E-3 \quad \text { (tight!) }
$$

(S: \#Steps from cell to cell, C: \#Cells, E : \#Boundary edges)

Proof sketch

- Induction on the number of split cells

Upper for the Number of Steps (1)

Theorem (Number of Steps)

$$
S \leq C+\frac{1}{2} E-3 \quad \text { (tight!) }
$$

(S: \#Steps from cell to cell, C : \#Cells, E : \#Boundary edges)

Proof sketch

- Induction on the number of split cells
- Induction base: No split cell

Visit every cell in $C-1$ steps
Return to s in $<\frac{1}{2} E-2$ steps (Lemma)

Upper for the Number of Steps (1)

Theorem (Number of Steps)

$$
S \leq C+\frac{1}{2} E-3 \quad \text { (tight!) }
$$

(S: \#Steps from cell to cell, C : \#Cells, E : \#Boundary edges)

Proof sketch

- Induction on the number of split cells
- Induction base: No split cell

Visit every cell in C-1 steps

Return to s in $\leq \frac{1}{2} E-2$ steps (Lemma)

Upper for the Number of Steps (1)

Theorem (Number of Steps)

$$
S \leq C+\frac{1}{2} E-3 \quad \text { (tight!) }
$$

(S: \#Steps from cell to cell, C : \#Cells, E : \#Boundary edges)

Proof sketch

- Induction on the number of split cells
- Induction base: No split cell
- Visit every cell in $C-1$ steps

Return to s in $\leq \frac{1}{2} E-2$ steps (Lemma)

Upper for the Number of Steps (1)

Theorem (Number of Steps)

$$
S \leq C+\frac{1}{2} E-3 \quad \text { (tight!) }
$$

(S: \#Steps from cell to cell, C : \#Cells, E : \#Boundary edges)

Proof sketch

- Induction on the number of split cells
- Induction base: No split cell
- Visit every cell in $C-1$ steps
- Return to s in $\leq \frac{1}{2} E-2$ steps (Lemma)

Proof Sketch (2)

Induction step:

- Explore up to the first split cell
- Define square Q around split cell
- Split polygon in two parts: P_{1}, P_{2}
- Path outside Q do not change
- K_{1} is unexplored part of P_{1}
- K_{2} is unexplored part of P_{2}
- Path in $P_{2} \backslash K_{2}$ visits no cell twice

Induction step:

- Explore up to the first split cell
- Define square Q around split cell
- Split polygon in two parts: P_{1}, P_{2}
- Path outside Q do not change
- K_{1} is unexplored part of P_{1}
- K_{2} is unexplored part of P_{2}
- Path in $P_{2} \backslash K_{2}$ visits no cell twice

Induction step:

- Explore up to the first split cell
- Define square Q around split cell
- Split polygon in two parts: P_{1}, P_{2}
- Path outside Q do not change
- K_{1} is unexplored part of P_{1}
- K_{2} is unexplored part of P_{2}
- Path in $P_{2} \backslash K_{2}$ visits no cell twice

Induction step:

- Explore up to the first split cell
- Define square Q around split cell
- Split polygon in two parts: P_{1}, P_{2}
- Path outside Q do not change
- K_{1} is unexplored part of P_{1}
- K_{2} is unexplored part of P_{2}
- Path in $P_{2} \backslash K_{2}$ visits no cell twice

Proof Sketch (2)

Induction step:

- Explore up to the first split cell
- Define square Q around split cell
- Split polygon in two parts: P_{1}, P_{2}
- Path outside Q do not change
- K_{1} is unexplored part of P_{1}

- Path in $P_{2} \backslash K_{2}$ visits no cell twice

Proof Sketch (2)

Induction step:

- Explore up to the first split cell
- Define square Q around split cell
- Split polygon in two parts: P_{1}, P_{2}
- Path outside Q do not change
- K_{1} is unexplored part of P_{1}
- K_{2} is unexplored part of P_{2}
- Path in $P_{2} \backslash K_{2}$ visits no cell twice

Proof Sketch (2)

Induction step:

- Explore up to the first split cell
- Define square Q around split cell
- Split polygon in two parts: P_{1}, P_{2}
- Path outside Q do not change
- K_{1} is unexplored part of P_{1}
- K_{2} is unexplored part of P_{2}
- Path in $P_{2} \backslash K_{2}$ visits no cell twice
- Path in $P_{2} \backslash K_{2}$ visits no cell twice
- Apply induction hypothesis to P_{1} and K_{2}
- K_{2} is offset of P_{2}; bound edges in K_{2} by edges in P_{2}
- Charge edges of P_{1} and P_{2} to edges of P and Q
- Edges in $Q: E(Q)=4(2 q-1)$

$$
\Rightarrow \quad S(P) \leq C+\frac{1}{2} E(P)-3
$$

- Path in $P_{2} \backslash K_{2}$ visits no cell twice
- Apply induction hypothesis to P_{1} and K_{2}
- K_{2} is offset of P_{2}; bound edges in K_{2} by edges in P_{2}
- Charge edges of P_{1} and P_{2} to edges of P and Q
- Edges in $Q: E(Q)=4(2 q-1)$

$$
\Rightarrow S(P) \leq C+\frac{1}{2} E(P)-3
$$

- Path in $P_{2} \backslash K_{2}$ visits no cell twice
- Apply induction hypothesis to P_{1} and K_{2}
- K_{2} is offset of P_{2}; bound edges in K_{2} by edges in P_{2}
- Charge edges of P_{1} and P_{2} to edges of P and Q
- Edges in $Q: E(Q)=4(2 q-1)$

$$
\Rightarrow S(P) \leq C+\frac{1}{2} E(P)-3
$$

- Path in $P_{2} \backslash K_{2}$ visits no cell twice
- Apply induction hypothesis to P_{1} and K_{2}
- K_{2} is offset of P_{2}; bound edges in K_{2} by edges in P_{2}
- Charge edges of P_{1} and P_{2} to edges of P and Q
- Edges in $Q: E(Q)=4(2 q-1)$

$$
\Rightarrow \quad S(P) \leq C+\frac{1}{2} E(P)-3
$$

- Path in $P_{2} \backslash K_{2}$ visits no cell twice
- Apply induction hypothesis to P_{1} and K_{2}
- K_{2} is offset of P_{2}; bound edges in K_{2} by edges in P_{2}
- Charge edges of P_{1} and P_{2} to edges of P and Q
- Edges in $Q: E(Q)=4(2 q-1)$

$$
\Rightarrow S(P) \leq C+\frac{1}{2} E(P)-3
$$

Proof Sketch (3)

$$
\operatorname{excess}(P) \leq \operatorname{excess}\left(P_{1}\right)+\operatorname{excess}\left(P_{2}\right)
$$

- Path in $P_{2} \backslash K_{2}$ visits no cell twice

$$
\operatorname{excess}(P) \leq \operatorname{excess}\left(P_{1}\right)+\operatorname{excess}\left(K_{2} \cup\{c\}\right)+1
$$

- Apply induction hypothesis to P_{1} and K_{2}

$$
\operatorname{excess}(P) \leq \frac{1}{2} E\left(P_{1}\right)-3+\frac{1}{2} E\left(K_{2} \cup\{c\}\right)-3+1
$$

- K_{2} is offset of P_{2}; bound edges in K_{2} by edges in P_{2}

$$
\operatorname{excess}(P) \leq \frac{1}{2} E\left(P_{1}\right)+\frac{1}{2} E\left(P_{2}\right)-8 q-5
$$

- Charge edges of P_{1} and P_{2} to edges of P and Q

$$
\operatorname{excess}(P) \leq \frac{1}{2} E(P)+\frac{1}{2} E(Q)-8 q-5
$$

- Edges in $Q: E(Q)=4(2 q-1)$
$\operatorname{excess}(P) \leq \frac{1}{2} E(P)-3$

$$
\Rightarrow \quad S(P) \leq C+\frac{1}{2} E(P)-3
$$

Competitivity

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive (i. e., $S_{\text {SmartDFs }} \leq \frac{4}{3} S_{\text {Optimal }}$)

Definition
 Narrow passage: Corridors of width 1 or 2.
 Definition
 Uncritical polygon: neither narrow passages nor split cells in the first layer.

Competitivity

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive (i. e., $S_{\text {SmartDFs }} \leq \frac{4}{3} S_{\text {Optimal }}$)

Definition

Narrow passage: Corridors of width 1 or 2.

Definition
 Uncritical polygon: neither narrow passages nor split cells in the first layer.

Competitivity

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive (i. e., $S_{\text {SmartDFs }} \leq \frac{4}{3} S_{\text {Optimal }}$)

Definition

Narrow passage: Corridors of width 1 or 2.

Definition

Uncritical polygon: neither narrow passages nor split cells in the first layer.

Competitivity (2)

Lemma (Edges in uncritical polygons)

For uncritical grid polygons: $E(P) \leq \frac{2}{3} C(P)+6$

Proof.

Competitivity (2)

Lemma (Edges in uncritical polygons)

For uncritical grid polygons: $E(P) \leq \frac{2}{3} C(P)+6$

Proof.

- Successively remove row or column of at least 3 cells, maintaining the uncritical property

Competitivity (2)

Lemma (Edges in uncritical polygons)

For uncritical grid polygons: $E(P) \leq \frac{2}{3} C(P)+6$

Proof.

- Successively remove row or column of at least 3 cells, maintaining the uncritical property

Competitivity (2)

Lemma (Edges in uncritical polygons)

For uncritical grid polygons: $E(P) \leq \frac{2}{3} C(P)+6$

Proof.

- Successively remove row or column of at least 3 cells, maintaining the uncritical property

Competitivity (2)

Lemma (Edges in uncritical polygons)

For uncritical grid polygons: $E(P) \leq \frac{2}{3} C(P)+6$

Proof.

- Successively remove row or column of at least 3 cells, maintaining the uncritical property

Competitivity (2)

Lemma (Edges in uncritical polygons)

For uncritical grid polygons: $E(P) \leq \frac{2}{3} C(P)+6$

Proof.

- Successively remove row or column of at least 3 cells, maintaining the uncritical property

Competitivity (2)

Lemma (Edges in uncritical polygons)

For uncritical grid polygons: $E(P) \leq \frac{2}{3} C(P)+6$

Proof.

- Successively remove row or column of at least 3 cells, maintaining the uncritical property

Competitivity (2)

Lemma (Edges in uncritical polygons)

For uncritical grid polygons: $E(P) \leq \frac{2}{3} C(P)+6$

Proof.

- Successively remove row or column of at least 3 cells, maintaining the uncritical property

Competitivity (2)

Lemma (Edges in uncritical polygons)

For uncritical grid polygons: $E(P) \leq \frac{2}{3} C(P)+6$

Proof.

- Successively remove row or column of at least 3 cells, maintaining the uncritical property

Competitivity (2)

Lemma (Edges in uncritical polygons)

For uncritical grid polygons: $E(P) \leq \frac{2}{3} C(P)+6$

Proof.

- Successively remove row or column of at least 3 cells, maintaining the uncritical property

Competitivity (2)

Lemma (Edges in uncritical polygons)

For uncritical grid polygons: $E(P) \leq \frac{2}{3} C(P)+6$

Proof.

- Successively remove row or column of at least 3 cells, maintaining the uncritical property

Competitivity (2)

Lemma (Edges in uncritical polygons)

For uncritical grid polygons: $E(P) \leq \frac{2}{3} C(P)+6$

Proof.

- Successively remove row or column of at least 3 cells, maintaining the uncritical property
- Ends with 3×3 polygon, $E=\frac{2}{3} C+6$
- $E \leq \frac{2}{3} C+6$ fulfilled in every step

Competitivity (2)

Lemma (Edges in uncritical polygons)

For uncritical grid polygons: $E(P) \leq \frac{2}{3} C(P)+6$

Proof.

- Successively remove row or column of at least 3 cells, maintaining the uncritical property
- Ends with 3×3 polygon, $E=\frac{2}{3} C+6$
- $E \leq \frac{2}{3} C+6$ fulfilled in every step

Competitivity (3)

Lemma (Exploration of uncritical polygons)

For uncritical grid polygons: $S(P) \leq C(P)+\frac{1}{2} E(P)-5$.

Proof sketch

Competitivity (3)

Lemma (Exploration of uncritical polygons)

For uncritical grid polygons: $S(P) \leq C(P)+\frac{1}{2} E(P)-5$.

Proof sketch

- $S(P) \leq C(P)+\frac{1}{2} E(P)-3$ shown
- Used shortest path lemma
$\left(s p(c, s) \leq \frac{1}{2} E(P)-2\right)$
- Proof assumed c.s in the first layer!
- Now: c in the 1-offset

2 steps gained!

Competitivity (3)

Lemma (Exploration of uncritical polygons)

For uncritical grid polygons: $S(P) \leq C(P)+\frac{1}{2} E(P)-5$.

Proof sketch

- $S(P) \leq C(P)+\frac{1}{2} E(P)-3$ shown
- Used shortest path lemma
$\left(s p(c, s) \leq \frac{1}{2} E(P)-2\right)$
- Proof assumed c,s in the first layer!
- Now: c in the 1-offset
- 2stens gained!

Competitivity (3)

Lemma (Exploration of uncritical polygons)

For uncritical grid polygons: $S(P) \leq C(P)+\frac{1}{2} E(P)-5$.

Proof sketch

- $S(P) \leq C(P)+\frac{1}{2} E(P)-3$ shown
- Used shortest path lemma
$\left(s p(c, s) \leq \frac{1}{2} E(P)-2\right)$
- Proof assumed c, s in the first layer!
- Now: c in the 1-offset
- 2 steps gained!

Competitivity (3)

Lemma (Exploration of uncritical polygons)

For uncritical grid polygons: $S(P) \leq C(P)+\frac{1}{2} E(P)-5$.

Proof sketch

- $S(P) \leq C(P)+\frac{1}{2} E(P)-3$ shown
- Used shortest path lemma
$\left(s p(c, s) \leq \frac{1}{2} E(P)-2\right)$
- Proof assumed c, s in the first layer!
- Now: c in the 1 -offset
- 2 steps gained!

Competitivity (3)

Lemma (Exploration of uncritical polygons)

For uncritical grid polygons: $S(P) \leq C(P)+\frac{1}{2} E(P)-5$.

Proof sketch

- $S(P) \leq C(P)+\frac{1}{2} E(P)-3$ shown
- Used shortest path lemma
$\left(s p(c, s) \leq \frac{1}{2} E(P)-2\right)$
- Proof assumed c, s in the first layer!
- Now: c in the 1 -offset
- 2 steps gained!

Competitivity Proof

Theorem (Competitivity) SmartDFS is $\frac{4}{3}$ competitive.

Competitivity Proof

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive.

Proof

- Remove narrow passages (explored optimally)
- \Rightarrow Split P into P_{i}
- Consider P_{i} separately

Competitivity Proof

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive.

Proof

- Remove narrow passages (explored optimally)

- \Rightarrow Split P into P_{i}
 - Consider P_{i} separately

Competitivity Proof

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive.

Proof

- Remove narrow passages (explored optimally)
- \Rightarrow Split P into P_{i}
- Consider P_{i} separately

Competitivity Proof

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive.

Proof

- Remove narrow passages (explored optimally)
- \Rightarrow Split P into P_{i}
- Consider P_{i} separately

Competitivity Proof (2)

- Show $S\left(P_{i}\right) \leq \frac{4}{3} C\left(P_{i}\right)-2$ by induction on the number of split cells in the first layer - Ind. base: No split cell \Rightarrow uncritical polygon \Rightarrow $\begin{aligned} S\left(P_{i}\right) & \leq C\left(P_{i}\right)+\frac{1}{2} E\left(P_{i}\right)-5 \quad \text { by exploration lemma } \\ & \leq C\left(P_{i}\right)+\frac{1}{2}\left(\frac{2}{3} C\left(P_{i}\right)+6\right)-5 \text { by edges lemma }\end{aligned}$

Competitivity Proof (2)

- Show $S\left(P_{i}\right) \leq \frac{4}{3} C\left(P_{i}\right)-2$ by induction on the number of split cells in the first layer
- Ind. base: No split cell \Rightarrow uncritical polygon \Rightarrow

Competitivity Proof (2)

- Show $S\left(P_{i}\right) \leq \frac{4}{3} C\left(P_{i}\right)-2$ by induction on the number of split cells in the first layer
- Ind. base: No split cell \Rightarrow uncritical polygon \Rightarrow

$$
\begin{aligned}
S\left(P_{i}\right) & \leq C\left(P_{i}\right)+\frac{1}{2} E\left(P_{i}\right)-5 \quad \text { by exploration lemma } \\
& \leq C\left(P_{i}\right)+\frac{1}{2}\left(\frac{2}{3} C\left(P_{i}\right)+6\right)-5 \text { by edges lemma }
\end{aligned}
$$

Competitivity Proof (2)

- Show $S\left(P_{i}\right) \leq \frac{4}{3} C\left(P_{i}\right)-2$ by induction on the number of split cells in the first layer
- Ind. base: No split cell \Rightarrow uncritical polygon \Rightarrow

$$
\begin{aligned}
S\left(P_{i}\right) & \leq C\left(P_{i}\right)+\frac{1}{2} E\left(P_{i}\right)-5 \quad \text { by exploration lemma } \\
& \leq C\left(P_{i}\right)+\frac{1}{2}\left(\frac{2}{3} C\left(P_{i}\right)+6\right)-5 \text { by edges lemma }
\end{aligned}
$$

Competitivity Proof (2)

- Show $S\left(P_{i}\right) \leq \frac{4}{3} C\left(P_{i}\right)-2$ by induction on the number of split cells in the first layer
- Ind. base: No split cell \Rightarrow uncritical polygon \Rightarrow

$$
\begin{aligned}
S\left(P_{i}\right) & \leq C\left(P_{i}\right)+\frac{1}{2} E\left(P_{i}\right)-5 \quad \text { by exploration lemma } \\
& \leq C\left(P_{i}\right)+\frac{1}{2}\left(\frac{2}{3} C\left(P_{i}\right)+6\right)-5 \quad \text { by edges lemma } \\
& =\frac{4}{3} C\left(P_{i}\right)-2
\end{aligned}
$$

Competitivity Proof (3)

Ind. step, case 1: New component was never visited before

Competitivity Proof (3)

Ind. step, case 1: New component was never visited before

- Split P_{i} into $P^{\prime}, P^{\prime \prime}$

Competitivity Proof (3)

Ind. step, case 1: New component was never visited before

- Split P_{i} into $P^{\prime}, P^{\prime \prime}$
- $S\left(P_{i}\right)=S\left(P^{\prime}\right)+S\left(P^{\prime \prime}\right)$

Competitivity Proof (3)

Ind. step, case 1: New component was never visited before

- Split P_{i} into $P^{\prime}, P^{\prime \prime}$
- $S\left(P_{i}\right)=S\left(P^{\prime}\right)+S\left(P^{\prime \prime}\right)$
- $C\left(P_{i}\right)=C\left(P^{\prime}\right)+C\left(P^{\prime \prime}\right)-1$

Competitivity Proof (3)

Ind. step, case 1: New component was never visited before

- Split P_{i} into $P^{\prime}, P^{\prime \prime}$
- $S\left(P_{i}\right)=S\left(P^{\prime}\right)+S\left(P^{\prime \prime}\right)$
- $C\left(P_{i}\right)=C\left(P^{\prime}\right)+C\left(P^{\prime \prime}\right)-1$

$$
S\left(P_{i}\right)=S\left(P^{\prime}\right)+S\left(P^{\prime \prime}\right)
$$

Competitivity Proof (3)

Ind. step, case 1: New component was never visited before

Competitivity Proof (3)

Ind. step, case 1: New component was never visited before

Competitivity Proof (3)

Ind. step, case 1: New component was never visited before

Competitivity Proof (4)

Ind. step, case 2: Robot meets cell c^{\prime} touching split cell c

$S\left(P_{i}\right)=S\left(P^{\prime}\right)+S\left(P^{\prime \prime}\right)-|Q|$

Competitivity Proof (4)

Ind. step, case 2: Robot meets cell c^{\prime} touching split cell c

- Split P_{i} into $P^{\prime}, P^{\prime \prime}$
- $Q:=$ largest rectangle containing both c, c^{\prime}

Competitivity Proof (4)

Ind. step, case 2: Robot meets cell c^{\prime} touching split cell c

- Split P_{i} into $P^{\prime}, P^{\prime \prime}$
- $Q:=$ largest rectangle containing both c, c^{\prime}

$S\left(P_{i}\right)$

Competitivity Proof (4)

Ind. step, case 2: Robot meets cell c^{\prime} touching split cell c

- Split P_{i} into $P^{\prime}, P^{\prime \prime}$
- $Q:=$ largest rectangle containing both c, c^{\prime}
- $C\left(P_{i}\right)=C\left(P^{\prime}\right)+C\left(P^{\prime \prime}\right)-|Q|$
$S\left(P_{i}\right)$

Competitivity Proof (4)

Ind. step, case 2: Robot meets cell c^{\prime} touching split cell c

- Split P_{i} into $P^{\prime}, P^{\prime \prime}$
- $Q:=$ largest rectangle containing both c, c^{\prime}
- $C\left(P_{i}\right)=C\left(P^{\prime}\right)+C\left(P^{\prime \prime}\right)-|Q|$
$S\left(P_{i}\right)=S\left(P^{\prime}\right)+S\left(P^{\prime \prime}\right)-|Q|$

Competitivity Proof (4)

Ind. step, case 2: Robot meets cell c^{\prime} touching split cell c

- Split P_{i} into $P^{\prime}, P^{\prime \prime}$
- $Q:=$ largest rectangle containing both c, c^{\prime}
- $C\left(P_{i}\right)=C\left(P^{\prime}\right)+C\left(P^{\prime \prime}\right)-|Q|$

$$
S\left(P_{i}\right)=S\left(P^{\prime}\right)+S\left(P^{\prime \prime}\right)-|Q|
$$

$$
\leq \frac{4}{3} C\left(P^{\prime}\right)+\frac{4}{3} C\left(P^{\prime \prime}\right)-4-|Q|
$$

Competitivity Proof (4)

Ind. step, case 2: Robot meets cell c^{\prime} touching split cell c

- Split P_{i} into $P^{\prime}, P^{\prime \prime}$
- $Q:=$ largest rectangle containing both c, c^{\prime}
- $C\left(P_{i}\right)=C\left(P^{\prime}\right)+C\left(P^{\prime \prime}\right)-|Q|$

$$
S\left(P_{i}\right)=S\left(P^{\prime}\right)+S\left(P^{\prime \prime}\right)-|Q|
$$

$$
\leq \frac{4}{3} C\left(P^{\prime}\right)+\frac{4}{3} C\left(P^{\prime \prime}\right)-4-|Q|
$$

$$
=\frac{4}{3} C\left(P_{i}\right)+\frac{1}{3}(|Q|-6)-2
$$

Competitivity Proof (4)

Ind. step, case 2: Robot meets cell c^{\prime} touching split cell c

- Split P_{i} into $P^{\prime}, P^{\prime \prime}$
- $Q:=$ largest rectangle containing both c, c^{\prime}
- $C\left(P_{i}\right)=C\left(P^{\prime}\right)+C\left(P^{\prime \prime}\right)-|Q|$

$$
S\left(P_{i}\right)=S\left(P^{\prime}\right)+S\left(P^{\prime \prime}\right)-|Q|
$$

$$
\leq \frac{4}{3} C\left(P^{\prime}\right)+\frac{4}{3} C\left(P^{\prime \prime}\right)-4-|Q|
$$

$$
=\frac{4}{3} C\left(P_{i}\right)+\frac{1}{3}(|Q|-6)-2
$$

$$
<\frac{4}{3} C\left(P_{i}\right)-2
$$

Competitivity Proof (4)

Ind. step, case 2: Robot meets cell c^{\prime} touching split cell c

- Split P_{i} into $P^{\prime}, P^{\prime \prime}$
- $Q:=$ largest rectangle containing both c, c^{\prime}
- $C\left(P_{i}\right)=C\left(P^{\prime}\right)+C\left(P^{\prime \prime}\right)-|Q|$

$$
S\left(P_{i}\right)=S\left(P^{\prime}\right)+S\left(P^{\prime \prime}\right)-|Q|
$$

$$
\leq \frac{4}{3} C\left(P^{\prime}\right)+\frac{4}{3} C\left(P^{\prime \prime}\right)-4-|Q|
$$

$$
=\frac{4}{3} C\left(P_{i}\right)+\frac{1}{3}(|Q|-6)-2
$$

$$
<\frac{4}{3} C\left(P_{i}\right)-2
$$

Summary

Problem: Online exploration of simple grid polygons

- Lower Bound: $\frac{7}{6}$
- Exploration strategy SmartDFS
- $S \leq C+\frac{1}{2} E-3$
- $\frac{4}{3}$-competitive
\rightarrow Accepted for COCOON 2005
- ToDo: Close the gap!

Summary

Problem: Online exploration of simple grid polygons

- Lower Bound: $\frac{7}{6}$
- Exploration strategy SmartDFS

- $\frac{4}{3}$-competitive
\rightarrow Accepted for COCOON 2005
- ToDo: Close the gap!

Problem: Online exploration of simple grid polygons

- Lower Bound: $\frac{7}{6}$
- Exploration strategy SmartDFS
- $S \leq C+\frac{1}{2} E-3$
- $\frac{4}{3}$-competitive
\rightarrow Accepted for COCOON 2005
- ToDo: Close the gap!

Problem: Online exploration of simple grid polygons

- Lower Bound: $\frac{7}{6}$
- Exploration strategy SmartDFS
- $S \leq C+\frac{1}{2} E-3$
- $\frac{4}{3}$-competitive
\rightarrow Accepted for COCOON 2005
- ToDo: Close the gap!

Problem: Online exploration of simple grid polygons

- Lower Bound: $\frac{7}{6}$
- Exploration strategy SmartDFS
- $S \leq C+\frac{1}{2} E-3$
- $\frac{4}{3}$-competitive

- ToDo: Close the gap!

Problem: Online exploration of simple grid polygons

- Lower Bound: $\frac{7}{6}$
- Exploration strategy SmartDFS
- $S \leq C+\frac{1}{2} E-3$
- ${ }_{3}^{4}$-competitive
\rightarrow Accepted for COCOON 2005
- ToDo: Close the gap!

Problem: Online exploration of simple grid polygons

- Lower Bound: $\frac{7}{6}$
- Exploration strategy SmartDFS
- $S \leq C+\frac{1}{2} E-3$
- $\frac{4}{3}$-competitive
\rightarrow Accepted for COCOON 2005
- ToDo: Close the gap!

Thank you!

