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The Problem

Robot, R, has to explore an unknown environment, P
More precisely, find a tour that

visits every part of P at least once
returns to the robot’s start point
can be computed online
is as short as possible

For example: lawn mowing, cleaning
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Environment and Robot

?

?

?

?

Grid polygon:

Environment is
subdivided by an
integer grid

Simple ⇒ No holes

Robot

No vision

Can sense 4 adjacent
cells

Can enter adjacent,
free cell

Tom Kamphans (Uni Bonn) Exploring Simple Grid Polygons 29th August 2005 3 / 25



Environment and Robot

?

?

?

?

Grid polygon:

Environment is
subdivided by an
integer grid

Simple ⇒ No holes

Robot

No vision

Can sense 4 adjacent
cells

Can enter adjacent,
free cell

Tom Kamphans (Uni Bonn) Exploring Simple Grid Polygons 29th August 2005 3 / 25



Environment and Robot

?

?

?

?

Grid polygon:

Environment is
subdivided by an
integer grid

Simple ⇒ No holes

Robot

No vision

Can sense 4 adjacent
cells

Can enter adjacent,
free cell

Tom Kamphans (Uni Bonn) Exploring Simple Grid Polygons 29th August 2005 3 / 25



Environment and Robot

?

?

?

?

Grid polygon:

Environment is
subdivided by an
integer grid

Simple ⇒ No holes

Robot

No vision

Can sense 4 adjacent
cells

Can enter adjacent,
free cell

Tom Kamphans (Uni Bonn) Exploring Simple Grid Polygons 29th August 2005 3 / 25



Environment and Robot

?

?

?

?

Grid polygon:

Environment is
subdivided by an
integer grid

Simple ⇒ No holes

Robot

No vision

Can sense 4 adjacent
cells

Can enter adjacent,
free cell

Tom Kamphans (Uni Bonn) Exploring Simple Grid Polygons 29th August 2005 3 / 25



Environment and Robot

?

?

?

?

Grid polygon:

Environment is
subdivided by an
integer grid

Simple ⇒ No holes

Robot

No vision

Can sense 4 adjacent
cells

Can enter adjacent,
free cell

Tom Kamphans (Uni Bonn) Exploring Simple Grid Polygons 29th August 2005 3 / 25



Environment and Robot

?

?

?

?

Grid polygon:

Environment is
subdivided by an
integer grid

Simple ⇒ No holes

Robot

No vision

Can sense 4 adjacent
cells

Can enter adjacent,
free cell

Tom Kamphans (Uni Bonn) Exploring Simple Grid Polygons 29th August 2005 3 / 25



Environment and Robot

?

?

?

?

Grid polygon:

Environment is
subdivided by an
integer grid

Simple ⇒ No holes

Robot

No vision

Can sense 4 adjacent
cells

Can enter adjacent,
free cell

Tom Kamphans (Uni Bonn) Exploring Simple Grid Polygons 29th August 2005 3 / 25



Environment and Robot

?

?

?

?

Grid polygon:

Environment is
subdivided by an
integer grid

Simple ⇒ No holes

Robot

No vision

Can sense 4 adjacent
cells

Can enter adjacent,
free cell

Tom Kamphans (Uni Bonn) Exploring Simple Grid Polygons 29th August 2005 3 / 25



Previous Work

Offline (i. e., environment is known to the robot)
With holes:
NP-hard [Itai, Papadimitriou, Szwarcfiter; 1982]

Without holes:
4
3 -approximation [Ntafos; 1992]
6
5 -approximation [Arkin, Fekete, Mitchell; 2000]

Online
With holes:
[Icking, Kamphans, Klein, Langetepe; 2000]
[Gabriely, Rimon; 2000]
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Why Simple Polygons?

Theorem (IKKL; 2000)
Lower bound on the online exploration of grid polygons with
holes: 2.

Theorem
There is a 4

3 -competitive online exploration strategy for polygons
without holes.
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A Lower Bound

Theorem
No online exploration strategy achieves a factor better than 7

6 in
simple grid polygon.
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Proof: Lower Bound
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Proof: Lower Bound
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Proof: Lower Bound

Online vs. Optimal
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Proof: Lower Bound
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Proof: Lower Bound

Polygons of arbitrary size
s
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SmartDFS: An exploration strategy (1)

s

First idea: Apply depth-first
search (DFS)

Left-hand rule: prefer step to the
left over a straight step over a
step to the right

Visits each cell twice!
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SmartDFS: An exploration strategy (2)

s

DFS visits each cell twice

More reasonable: Return directly to unvisited cell

Improved DFS

Improvement 1
Return directly to those cells that have unexplored neighbors.
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SmartDFS: An exploration strategy (3)

s

Split cells

DFS visits long corridor four times
More reasonable: Visit right part immediately, continue with
the corridor, visit left part, return to s
Long corridor is traversed only two times!
Split cells: Set of unvisited cells gets disconnected

Improvement 2
Detect and handle split cells (i. e., prefer parts of P farther away
from the start).
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Java Applet

http://www.geometrylab.de/Gridrobot/
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Layer and Offset

First layer :=
Boundary cells of P

1-offset :=
P without first layer

Analogously: Second layer

2-offset

and so on

E : #edges between free
and blocked cells

Lemma (Number of edges)
P ′ is `-offset of P ⇒ E(P ′) ≤ E(P)− 8`.
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Shortest Paths Lengths

Lemma (Shortest Path)
Shortest path between two cells in P ≤ 1

2E(P)− 2.

Proof sketch.

s

t

πcw

πccw

Worst case:
Both cells in the first layer

|πcw| = |πccw|
= 1

2 · #cells in the first layer

#cells in the first layer
≤ #edges− 4
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Upper for the Number of Steps (1)

Theorem (Number of Steps)

S ≤ C +
1
2

E − 3 (tight!)

(S: #Steps from cell to cell, C: #Cells, E : #Boundary edges)

Proof sketch
Induction on the number of split cells

Induction base: No split cell

Visit every cell in C − 1 steps

Return to s in ≤ 1
2E − 2 steps (Lemma)
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Proof Sketch (2)

s

Split cellSquare Q

P1

P2P2

P1

K2

K1

s’

s

Induction step:

Explore up to the first split cell

Define square Q around split cell

Split polygon in two parts: P1, P2

Path outside Q do not change

K1 is unexplored part of P1

K2 is unexplored part of P2

Path in P2\K2 visits no cell twice
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Proof Sketch (3)

excess(P) ≤ excess(P1) + excess(P2)

Path in P2\K2 visits no cell twice

excess(P) ≤ excess(P1) + excess(K2 ∪ {c}) + 1

Apply induction hypothesis to P1 and K2

excess(P) ≤ 1
2 E(P1)− 3 + 1

2 E(K2 ∪ {c})− 3 + 1

K2 is offset of P2; bound edges in K2 by edges in P2

excess(P) ≤ 1
2 E(P1) + 1

2 E(P2)− 8q − 5

Charge edges of P1 and P2 to edges of P and Q

excess(P) ≤ 1
2 E(P) + 1

2 E(Q)− 8q − 5

Edges in Q: E(Q) = 4(2q − 1)

excess(P) ≤ 1
2 E(P)− 3

⇒ S(P) ≤ C + 1
2 E(P)− 3
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Competitivity

Theorem (Competitivity)
SmartDFS is 4

3 competitive (i. e., SSmartDFS ≤ 4
3 SOptimal)

Definition
Narrow passage: Corridors of width 1 or 2.

Definition
Uncritical polygon: neither narrow passages nor split cells in the
first layer.
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Competitivity (2)

Lemma (Edges in uncritical polygons)
For uncritical grid polygons: E(P) ≤ 2

3C(P) + 6

Proof.

Successively remove row or
column of at least 3 cells,
maintaining the uncritical
property

Ends with 3× 3 polygon,
E = 2

3C + 6

E ≤ 2
3C + 6 fulfilled in every step
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Competitivity (3)

Lemma (Exploration of uncritical polygons)
For uncritical grid polygons: S(P) ≤ C(P) + 1

2E(P)− 5.

Proof sketch

c

s

S(P) ≤ C(P) + 1
2E(P)− 3 shown

Used shortest path lemma
(sp(c, s) ≤ 1

2E(P)− 2)

Proof assumed c, s in the first layer!

Now: c in the 1-offset

2 steps gained!
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Competitivity Proof

Theorem (Competitivity)
SmartDFS is 4

3 competitive.

Proof

P1 P2 P3 P4

Remove narrow passages (explored optimally)

⇒ Split P into Pi

Consider Pi separately
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Competitivity Proof (2)

Show S(Pi) ≤ 4
3C(Pi)− 2

by induction on the number of split cells in the first layer

Ind. base: No split cell ⇒ uncritical polygon ⇒

S(Pi) ≤ C(Pi) +
1
2

E(Pi)− 5 by exploration lemma

≤ C(Pi) +
1
2

(
2
3

C(Pi) + 6
)
− 5 by edges lemma

=
4
3

C(Pi)− 2
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Competitivity Proof (3)

Ind. step, case 1: New component was never visited before

P ′′

P ′

Split Pi into P ′, P ′′

S(Pi) = S(P ′) + S(P ′′)

C(Pi) = C(P ′) + C(P ′′)− 1

S(Pi) = S(P ′) + S(P ′′)

≤ 4
3

C(P ′)− 2 +
4
3

C(P ′′)− 2

=
4
3

C(Pi) +
4
3
− 4

<
4
3

C(Pi)− 2
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C(P ′)− 2 +
4
3

C(P ′′)− 2

=
4
3

C(Pi) +
4
3
− 4

<
4
3

C(Pi)− 2
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Competitivity Proof (4)

Ind. step, case 2: Robot meets cell c′ touching split cell c

c

c

c’

c’

P ′′

P ′

P ′
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Q := largest rectangle containing
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Summary

Problem: Online exploration of simple grid polygons

Lower Bound: 7
6

Exploration strategy SmartDFS

S ≤ C + 1
2E − 3

4
3 -competitive

→ Accepted for COCOON 2005

ToDo: Close the gap!
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Thank you!
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