
Maintaining Arrays of Contiguous Objects

Michael A. Bender1 Sándor P. Fekete2 Tom Kamphans2

Nils Schweer2

1Department of Computer Science
State University of New York at Stony Brook

Stony Brook, USA

2Braunschweig University of Technology
Computer Science, Algorithms Group

Braunschweig, Germany.

17th International Symposium on Fundamentals of
Computation Theory

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 1 / 19

Motivation

Application:
Maintaining modules on an FPGA
FPGA:

Array of hardware-configurable
processing units (CLBs)
I/O Hardware
Communication buses
Reconfiguration: columnwise

Module: Fixed configuration of
CLBs and communication
Here: Full columns only

FPGA

CLB

I/O

configuration

write

read state

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 2 / 19

Motivation

Application:
Maintaining modules on an FPGA
FPGA:

Array of hardware-configurable
processing units (CLBs)
I/O Hardware
Communication buses
Reconfiguration: columnwise

Module: Fixed configuration of
CLBs and communication
Here: Full columns only

FPGA

CLB

I/O

configuration

write

read state

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 2 / 19

Motivation

Application:
Maintaining modules on an FPGA
FPGA:

Array of hardware-configurable
processing units (CLBs)
I/O Hardware
Communication buses
Reconfiguration: columnwise

Module: Fixed configuration of
CLBs and communication
Here: Full columns only

FPGA

CLB

I/O

configuration

write

read state

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 2 / 19

Motivation

Application:
Maintaining modules on an FPGA
FPGA:

Array of hardware-configurable
processing units (CLBs)
I/O Hardware
Communication buses
Reconfiguration: columnwise

Module: Fixed configuration of
CLBs and communication
Here: Full columns only

FPGA

CLB

I/O

configuration

write

read state

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 2 / 19

Motivation

Application:
Maintaining modules on an FPGA
FPGA:

Array of hardware-configurable
processing units (CLBs)
I/O Hardware
Communication buses
Reconfiguration: columnwise

Module: Fixed configuration of
CLBs and communication
Here: Full columns only

FPGA

CLB

I/O

configuration

write

read state

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 2 / 19

Motivation

Application:
Maintaining modules on an FPGA
FPGA:

Array of hardware-configurable
processing units (CLBs)
I/O Hardware
Communication buses
Reconfiguration: columnwise

Module: Fixed configuration of
CLBs and communication
Here: Full columns only

FPGA

CLB

I/O

configuration

write

read state

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 2 / 19

Motivation

Application:
Maintaining modules on an FPGA
FPGA:

Array of hardware-configurable
processing units (CLBs)
I/O Hardware
Communication buses
Reconfiguration: columnwise

Module: Fixed configuration of
CLBs and communication
Here: Full columns only

FPGA

CLB

I/O

configuration

write

read state

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 2 / 19

Motivation

Application:
Maintaining modules on an FPGA
FPGA:

Array of hardware-configurable
processing units (CLBs)
I/O Hardware
Communication buses
Reconfiguration: columnwise

Module: Fixed configuration of
CLBs and communication
Here: Full columns only

FPGA

CLB

I/O

configuration

write

read state

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 2 / 19

FPGAs

Scheduler

Module Library

connected

free space

insufficient

Defragmentation: StopMoveRestart

FPGA

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 3 / 19

FPGAs

Scheduler

Module Library

connected

free space

insufficient

Defragmentation: StopMoveRestart

FPGA

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 3 / 19

FPGAs

Scheduler

Module Library

connected

free space

insufficient

Defragmentation: StopMoveRestart

FPGA

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 3 / 19

FPGAs

Scheduler

Module Library

connected

free space

insufficient

Defragmentation: StopMoveRestart

FPGA

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 3 / 19

FPGAs

Scheduler

Module Library

connected

free space

insufficient

Defragmentation: StopMoveRestart

FPGA

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 3 / 19

FPGAs

Scheduler

Module Library

connected

free space

insufficient

Defragmentation: StopMoveRestart

FPGA

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 3 / 19

FPGAs

Scheduler

Module Library

connected

free space

insufficient

Defragmentation: StopMoveRestart

FPGA

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 3 / 19

FPGAs

Scheduler

Module Library

connected

free space

insufficient

Defragmentation: StopMoveRestart

FPGA

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 3 / 19

FPGAs

Scheduler

Module Library

connected

free space

insufficient

Defragmentation: StopMoveRestart

FPGA

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 3 / 19

FPGAs

Scheduler

Module Library

connected

free space

insufficient

Defragmentation: StopMoveRestart

FPGA

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 3 / 19

FPGAs

Scheduler

Module Library

connected

free space

insufficient

Defragmentation: StopMoveRestart

FPGA

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 3 / 19

FPGAs

Scheduler

Module Library

connected

free space

insufficient

Defragmentation:

StopMoveRestart

FPGA

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 3 / 19

FPGAs

Scheduler

Module Library

connected

free space

insufficient

Defragmentation: Stop

MoveRestart

FPGA

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 3 / 19

FPGAs

Scheduler

Module Library

connected

free space

insufficient

Defragmentation:

Stop

Move

Restart

FPGA

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 3 / 19

FPGAs

Scheduler

Module Library

connected

free space

insufficient

Defragmentation:

StopMove

Restart

FPGA

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 3 / 19

FPGAs

Scheduler

Module Library

connected

free space

insufficient

Defragmentation: StopMoveRestart

FPGA

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 3 / 19

FPGAs

Scheduler

Module Library

connected

free space

insufficient

Defragmentation: StopMoveRestart

FPGA

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 3 / 19

FPGAs

Scheduler

Module Library

connected

free space

insufficient

Defragmentation: StopMoveRestart

FPGA

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 3 / 19

FPGAs

Scheduler

Module Library

connected

free space

insufficient

Defragmentation: StopMoveRestart

FPGA

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 3 / 19

Problem

Given: Array A of size N
Items M1, . . . Mn, Mi has size mi and duration time di

Process items in order (allocate contiguous free space of
size mi ; remove di time units after being placed)
Valid move: Target position is free space

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 4 / 19

Problem

Given: Array A of size N
Items M1, . . . Mn, Mi has size mi and duration time di

Process items in order (allocate contiguous free space of
size mi ; remove di time units after being placed)
Valid move: Target position is free space

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 4 / 19

Problem

Given: Array A of size N
Items M1, . . . Mn, Mi has size mi and duration time di

Process items in order (allocate contiguous free space of
size mi ; remove di time units after being placed)
Valid move: Target position is free space

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 4 / 19

Problem

Given: Array A of size N
Items M1, . . . Mn, Mi has size mi and duration time di

Process items in order (allocate contiguous free space of
size mi ; remove di time units after being placed)
Valid move: Target position is free space

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 4 / 19

Problem

Given: Array A of size N
Items M1, . . . Mn, Mi has size mi and duration time di

Process items in order (allocate contiguous free space of
size mi ; remove di time units after being placed)
Valid move: Target position is free space

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 4 / 19

Problem

Given: Array A of size N
Items M1, . . . Mn, Mi has size mi and duration time di

Process items in order (allocate contiguous free space of
size mi ; remove di time units after being placed)
Valid move: Target position is free space

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 4 / 19

Problem

Given: Array A of size N
Items M1, . . . Mn, Mi has size mi and duration time di

Process items in order (allocate contiguous free space of
size mi ; remove di time units after being placed)
Valid move: Target position is free space

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 4 / 19

Problem

Given: Array A of size N
Items M1, . . . Mn, Mi has size mi and duration time di

Process items in order (allocate contiguous free space of
size mi ; remove di time units after being placed)
Valid move: Target position is free space

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 4 / 19

Problem

Given: Array A of size N
Items M1, . . . Mn, Mi has size mi and duration time di

Process items in order (allocate contiguous free space of
size mi ; remove di time units after being placed)
Valid move: Target position is free space

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 4 / 19

Problem

Given: Array A of size N
Items M1, . . . Mn, Mi has size mi and duration time di

Process items in order (allocate contiguous free space of
size mi ; remove di time units after being placed)
Valid move: Target position is free space

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 4 / 19

Problem

Given: Array A of size N
Items M1, . . . Mn, Mi has size mi and duration time di

Process items in order (allocate contiguous free space of
size mi ; remove di time units after being placed)
Valid move: Target position is free space

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 4 / 19

Approaches

Use simple strategy, defrag whole array when necessary
Maintain array to avoid complete defragmentation

Theorem (Fekete et al., 2008)
Rearranging an array of contiguous objects such that the free
space is maximized is strongly NP-complete. Moreover, there is
no PTAS within any polynomial approx. factor (unless P = NP).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 5 / 19

Approaches

Use simple strategy, defrag whole array when necessary
Maintain array to avoid complete defragmentation

Theorem (Fekete et al., 2008)
Rearranging an array of contiguous objects such that the free
space is maximized is strongly NP-complete. Moreover, there is
no PTAS within any polynomial approx. factor (unless P = NP).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 5 / 19

Approaches

Use simple strategy, defrag whole array when necessary
Maintain array to avoid complete defragmentation

Theorem (Fekete et al., 2008)
Rearranging an array of contiguous objects such that the free
space is maximized is strongly NP-complete. Moreover, there is
no PTAS within any polynomial approx. factor (unless P = NP).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 5 / 19

Approaches

Use simple strategy, defrag whole array when necessary
Maintain array to avoid complete defragmentation

Theorem (Fekete et al., 2008)
Rearranging an array of contiguous objects such that the free
space is maximized is strongly NP-complete. Moreover, there is
no PTAS within any polynomial approx. factor (unless P = NP).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 5 / 19

AlwaysSorted

Insert modules such that they are sorted by their sizes
After deletion: move smaller modules in array to close the
gap
No fragmentation (free space is always contiguous)

Theorem
AlwaysSorted achieves the optimal makespan (if there is no
time penalty for moves).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 6 / 19

AlwaysSorted

Insert modules such that they are sorted by their sizes
After deletion: move smaller modules in array to close the
gap
No fragmentation (free space is always contiguous)

Theorem
AlwaysSorted achieves the optimal makespan (if there is no
time penalty for moves).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 6 / 19

AlwaysSorted

Insert modules such that they are sorted by their sizes
After deletion: move smaller modules in array to close the
gap
No fragmentation (free space is always contiguous)

Theorem
AlwaysSorted achieves the optimal makespan (if there is no
time penalty for moves).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 6 / 19

AlwaysSorted

Insert modules such that they are sorted by their sizes
After deletion: move smaller modules in array to close the
gap
No fragmentation (free space is always contiguous)

Theorem
AlwaysSorted achieves the optimal makespan (if there is no
time penalty for moves).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 6 / 19

AlwaysSorted

Insert modules such that they are sorted by their sizes
After deletion: move smaller modules in array to close the
gap
No fragmentation (free space is always contiguous)

Theorem
AlwaysSorted achieves the optimal makespan (if there is no
time penalty for moves).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 6 / 19

AlwaysSorted

Insert modules such that they are sorted by their sizes
After deletion: move smaller modules in array to close the
gap
No fragmentation (free space is always contiguous)

Theorem
AlwaysSorted achieves the optimal makespan (if there is no
time penalty for moves).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 6 / 19

AlwaysSorted

Insert modules such that they are sorted by their sizes
After deletion: move smaller modules in array to close the
gap
No fragmentation (free space is always contiguous)

Theorem
AlwaysSorted achieves the optimal makespan (if there is no
time penalty for moves).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 6 / 19

AlwaysSorted

Insert modules such that they are sorted by their sizes
After deletion: move smaller modules in array to close the
gap
No fragmentation (free space is always contiguous)

Theorem
AlwaysSorted achieves the optimal makespan (if there is no
time penalty for moves).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 6 / 19

AlwaysSorted

Insert modules such that they are sorted by their sizes
After deletion: move smaller modules in array to close the
gap
No fragmentation (free space is always contiguous)

Theorem
AlwaysSorted achieves the optimal makespan (if there is no
time penalty for moves).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 6 / 19

AlwaysSorted

Insert modules such that they are sorted by their sizes
After deletion: move smaller modules in array to close the
gap
No fragmentation (free space is always contiguous)

Theorem
AlwaysSorted achieves the optimal makespan (if there is no
time penalty for moves).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 6 / 19

AlwaysSorted

Insert modules such that they are sorted by their sizes
After deletion: move smaller modules in array to close the
gap
No fragmentation (free space is always contiguous)

Theorem
AlwaysSorted achieves the optimal makespan (if there is no
time penalty for moves).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 6 / 19

AlwaysSorted

Insert modules such that they are sorted by their sizes
After deletion: move smaller modules in array to close the
gap
No fragmentation (free space is always contiguous)

Theorem
AlwaysSorted achieves the optimal makespan (if there is no
time penalty for moves).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 6 / 19

AlwaysSorted

Insert modules such that they are sorted by their sizes
After deletion: move smaller modules in array to close the
gap
No fragmentation (free space is always contiguous)

Theorem
AlwaysSorted achieves the optimal makespan (if there is no
time penalty for moves).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 6 / 19

AlwaysSorted

Insert modules such that they are sorted by their sizes
After deletion: move smaller modules in array to close the
gap
No fragmentation (free space is always contiguous)

Theorem
AlwaysSorted achieves the optimal makespan (if there is no
time penalty for moves).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 6 / 19

AlwaysSorted

Insert modules such that they are sorted by their sizes
After deletion: move smaller modules in array to close the
gap
No fragmentation (free space is always contiguous)

Theorem
AlwaysSorted achieves the optimal makespan (if there is no
time penalty for moves).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 6 / 19

AlwaysSorted

Insert modules such that they are sorted by their sizes
After deletion: move smaller modules in array to close the
gap
No fragmentation (free space is always contiguous)

Theorem
AlwaysSorted achieves the optimal makespan (if there is no
time penalty for moves).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 6 / 19

AlwaysSorted

Insert modules such that they are sorted by their sizes
After deletion: move smaller modules in array to close the
gap
No fragmentation (free space is always contiguous)

Theorem
AlwaysSorted achieves the optimal makespan (if there is no
time penalty for moves).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 6 / 19

AlwaysSorted

Insert modules such that they are sorted by their sizes
After deletion: move smaller modules in array to close the
gap
No fragmentation (free space is always contiguous)

Theorem
AlwaysSorted achieves the optimal makespan (if there is no
time penalty for moves).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 6 / 19

Delayed Sort

Idea: Reduce moves by delaying sorting
Maintain block of free space, left and right alternatingly
If module size ≤ total free space:

If max mi < max fj : insert module
Check, if module can be inserted after compaction
(shift all modules towards the large free space)
If max mi < max fj : insert module
Otherwise: Sort array and insert into the single free space

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 7 / 19

Delayed Sort

Idea: Reduce moves by delaying sorting
Maintain block of free space, left and right alternatingly
If module size ≤ total free space:

If max mi < max fj : insert module
Check, if module can be inserted after compaction
(shift all modules towards the large free space)
If max mi < max fj : insert module
Otherwise: Sort array and insert into the single free space

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 7 / 19

Delayed Sort

Idea: Reduce moves by delaying sorting
Maintain block of free space, left and right alternatingly
If module size ≤ total free space:

If max mi < max fj : insert module
Check, if module can be inserted after compaction
(shift all modules towards the large free space)
If max mi < max fj : insert module
Otherwise: Sort array and insert into the single free space

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 7 / 19

Delayed Sort

Idea: Reduce moves by delaying sorting
Maintain block of free space, left and right alternatingly
If module size ≤ total free space:

If max mi < max fj : insert module
Check, if module can be inserted after compaction
(shift all modules towards the large free space)
If max mi < max fj : insert module
Otherwise: Sort array and insert into the single free space

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 7 / 19

Delayed Sort

Idea: Reduce moves by delaying sorting
Maintain block of free space, left and right alternatingly
If module size ≤ total free space:

If

Ensures that sorting/

compaction is possible
max mi < max fj : insert module

Check, if module can be inserted after compaction
(shift all modules towards the large free space)
If max mi < max fj : insert module
Otherwise: Sort array and insert into the single free space

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 7 / 19

Delayed Sort

Idea: Reduce moves by delaying sorting
Maintain block of free space, left and right alternatingly
If module size ≤ total free space:

If max mi < max fj : insert module
Check, if module can be inserted after compaction
(shift all modules towards the large free space)
If max mi < max fj : insert module
Otherwise: Sort array and insert into the single free space

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 7 / 19

Delayed Sort

Idea: Reduce moves by delaying sorting
Maintain block of free space, left and right alternatingly
If module size ≤ total free space:

If max mi < max fj : insert module
Check, if module can be inserted after compaction
(shift all modules towards the large free space)
If max mi < max fj : insert module
Otherwise: Sort array and insert into the single free space

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 7 / 19

Delayed Sort

Idea: Reduce moves by delaying sorting
Maintain block of free space, left and right alternatingly
If module size ≤ total free space:

If max mi < max fj : insert module
Check, if module can be inserted after compaction
(shift all modules towards the large free space)
If max mi < max fj : insert module
Otherwise: Sort array and insert into the single free space

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 7 / 19

Delayed Sort

Idea: Reduce moves by delaying sorting
Maintain block of free space, left and right alternatingly
If module size ≤ total free space:

If max mi < max fj : insert module
Check, if module can be inserted after compaction
(shift all modules towards the large free space)
If max mi < max fj : insert module
Otherwise: Sort array and insert into the single free space

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 7 / 19

Sorting

Assumption: max mi < max fj
// Compact:
from right to left: shift every module to the right as far as possible
from left to right: shift every module to the left as far as possible
// Sort:
I := indices of modules in array
while I 6= ∅

k = argmaxi∈I{mi}
move Mk to the right end of the free space
I = I \ {k}
for i = k + 1, . . . , n and i ∈ I

shift Mi to the left as far as possible

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 8 / 19

Sorting

Theorem
Sorting an array with n contiguous objects fulfilling
max mi < max fj takes O(n2) moves.

Theorem
Sorting an array with n contiguous objects fulfilling
max mi < max fj takes Ω(n2) moves.

kk + 1 k + 1k + 1k + 1 k k

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 9 / 19

Sorting

Theorem
Sorting an array with n contiguous objects fulfilling
max mi < max fj takes O(n2) moves.

Theorem
Sorting an array with n contiguous objects fulfilling
max mi < max fj takes Ω(n2) moves.

kk + 1 k + 1k + 1k + 1 k k

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 9 / 19

Sorting

Theorem
Sorting an array with n contiguous objects fulfilling
max mi < max fj takes O(n2) moves.

Theorem
Sorting an array with n contiguous objects fulfilling
max mi < max fj takes Ω(n2) moves.

kk + 1 k + 1k + 1k + 1 k k

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 9 / 19

ClassSort

Idea:
Round the modules’ sizes to next power of 2
Subdivide the array into size-classes, Ca, . . . , C0

Insert modules in the corresponding size class
Leave some space for insertions between size classes

...Ca C2 C1 C0

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 10 / 19

ClassSort

Idea:
Round the modules’ sizes to next power of 2
Subdivide the array into size-classes, Ca, . . . , C0

Insert modules in the corresponding size class
Leave some space for insertions between size classes

...Ca C2 C1 C0

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 10 / 19

ClassSort

Idea:
Round the modules’ sizes to next power of 2
Subdivide the array into size-classes, Ca, . . . , C0

Insert modules in the corresponding size class
Leave some space for insertions between size classes

...Ca C2 C1 C0

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 10 / 19

ClassSort

Idea:
Round the modules’ sizes to next power of 2
Subdivide the array into size-classes, Ca, . . . , C0

Insert modules in the corresponding size class
Leave some space for insertions between size classes

...Ca C2 C1 C0

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 10 / 19

ClassSort

If a class Ci is full (all slots occupied)
⇒ Split a slot of class Ci+1

Ci−1CiCi+1

Ci+1Move the rightmost module of Ci+1Split the rightmost block of
Adjust class boundaries

Ci+1 Ci

How to organize the free spaces to avoid too many moves?

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 11 / 19

ClassSort

If a class Ci is full (all slots occupied)
⇒ Split a slot of class Ci+1

Ci−1CiCi+1

Ci+1Move the rightmost module of Ci+1Split the rightmost block of
Adjust class boundaries

Ci+1 Ci

How to organize the free spaces to avoid too many moves?

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 11 / 19

ClassSort

If a class Ci is full (all slots occupied)
⇒ Split a slot of class Ci+1

Ci−1CiCi+1

Ci+1Move the rightmost module of

Ci+1Split the rightmost block of
Adjust class boundaries

Ci+1 Ci

How to organize the free spaces to avoid too many moves?

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 11 / 19

ClassSort

If a class Ci is full (all slots occupied)
⇒ Split a slot of class Ci+1

Ci−1CiCi+1

Ci+1Move the rightmost module of

Ci+1Split the rightmost block of
Adjust class boundaries

Ci+1 Ci

How to organize the free spaces to avoid too many moves?

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 11 / 19

ClassSort

If a class Ci is full (all slots occupied)
⇒ Split a slot of class Ci+1

Ci−1CiCi+1

Ci+1Move the rightmost module of

Ci+1Split the rightmost block of

Adjust class boundaries

Ci+1 Ci

How to organize the free spaces to avoid too many moves?

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 11 / 19

ClassSort

If a class Ci is full (all slots occupied)
⇒ Split a slot of class Ci+1

Ci−1CiCi+1

Ci+1Move the rightmost module of Ci+1Split the rightmost block of

Adjust class boundaries

Ci+1 Ci

How to organize the free spaces to avoid too many moves?

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 11 / 19

ClassSort

If a class Ci is full (all slots occupied)
⇒ Split a slot of class Ci+1

Ci−1

CiCi+1

Ci+1Move the rightmost module of Ci+1Split the rightmost block of

Adjust class boundaries

Ci+1 Ci

How to organize the free spaces to avoid too many moves?

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 11 / 19

ClassSort

If a class Ci is full (all slots occupied)
⇒ Split a slot of class Ci+1

Ci−1

CiCi+1

Ci+1Move the rightmost module of Ci+1Split the rightmost block of
Adjust class boundaries

Ci+1 Ci

How to organize the free spaces to avoid too many moves?

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 11 / 19

Redundant Binary Numbers

Binary numbers:

d = d`d`−1 . . . d1d0

di ∈ {0, 1}

Decimal value:
∑̀
i=0

di 2i

Carry: 11111111
+1

100000000

Redundant bin. numbers:

d = d`d`−1 . . . d1d0

di ∈ {0, 1, 2}

Decimal value:
∑̀
i=0

di 2i

410 = 1002 = 0122 = 0202

Carry: 22222222
+1

111111111

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 12 / 19

Redundant Binary Numbers

Binary numbers:

d = d`d`−1 . . . d1d0

di ∈ {0, 1}

Decimal value:
∑̀
i=0

di 2i

Carry: 11111111
+1

100000000

Redundant bin. numbers:

d = d`d`−1 . . . d1d0

di ∈ {0, 1, 2}

Decimal value:
∑̀
i=0

di 2i

410 = 1002 = 0122 = 0202

Carry: 22222222
+1

111111111

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 12 / 19

Redundant Binary Numbers

Binary numbers:

d = d`d`−1 . . . d1d0

di ∈ {0, 1}

Decimal value:
∑̀
i=0

di 2i

Carry: 11111111
+1

100000000

Redundant bin. numbers:

d = d`d`−1 . . . d1d0

di ∈ {0, 1, 2}

Decimal value:
∑̀
i=0

di 2i

410 = 1002 = 0122 = 0202

Carry: 22222222
+1

111111111

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 12 / 19

Redundant Binary Numbers

Binary numbers:

d = d`d`−1 . . . d1d0

di ∈ {0, 1}

Decimal value:
∑̀
i=0

di 2i

Carry: 11111111
+1

100000000

Redundant bin. numbers:

d = d`d`−1 . . . d1d0

di ∈ {0, 1, 2}

Decimal value:
∑̀
i=0

di 2i

410 = 1002 = 0122 = 0202

Carry: 22222222
+1

111111111

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 12 / 19

Redundant Binary Numbers

Binary numbers:

d = d`d`−1 . . . d1d0

di ∈ {0, 1}

Decimal value:
∑̀
i=0

di 2i

Carry: 11111111
+1

100000000

Redundant bin. numbers:

d = d`d`−1 . . . d1d0

di ∈ {0, 1, 2}

Decimal value:
∑̀
i=0

di 2i

410 = 1002 = 0122 = 0202

Carry: 22222222
+1

111111111

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 12 / 19

Redundant Binary Numbers

Binary numbers:

d = d`d`−1 . . . d1d0

di ∈ {0, 1}

Decimal value:
∑̀
i=0

di 2i

Carry: 11111111
+1

100000000

Redundant bin. numbers:

d = d`d`−1 . . . d1d0

di ∈ {0, 1, 2}

Decimal value:
∑̀
i=0

di 2i

410 = 1002 = 0122 = 0202

Carry: 22222222
+1

111111111

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 12 / 19

Redundant Binary Numbers

Binary numbers:

d = d`d`−1 . . . d1d0

di ∈ {0, 1}

Decimal value:
∑̀
i=0

di 2i

Carry: 11111111
+1

100000000

Redundant bin. numbers:

d = d`d`−1 . . . d1d0

di ∈ {0, 1, 2}

Decimal value:
∑̀
i=0

di 2i

410 = 1002 = 0122 = 0202

Carry: 22222222
+1

111111111

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 12 / 19

Redundant Binary Numbers

Binary numbers:

d = d`d`−1 . . . d1d0

di ∈ {0, 1}

Decimal value:
∑̀
i=0

di 2i

Carry: 11111111
+1

100000000

Redundant bin. numbers:

d = d`d`−1 . . . d1d0

di ∈ {0, 1, 2}

Decimal value:
∑̀
i=0

di 2i

410 = 1002 = 0122 = 0202

Carry: 22222222
+1

111111111

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 12 / 19

Redundant Binary Numbers

Binary numbers:

d = d`d`−1 . . . d1d0

di ∈ {0, 1}

Decimal value:
∑̀
i=0

di 2i

Carry: 11111111
+1

100000000

Redundant bin. numbers:

d = d`d`−1 . . . d1d0

di ∈ {0, 1, 2}

Decimal value:
∑̀
i=0

di 2i

410 = 1002 = 0122 = 0202

Carry: 22222222
+1

111111111

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 12 / 19

Redundant Binary Numbers

Binary numbers:

d = d`d`−1 . . . d1d0

di ∈ {0, 1}

Decimal value:
∑̀
i=0

di 2i

Carry: 11111111
+1

100000000

Redundant bin. numbers:

d = d`d`−1 . . . d1d0

di ∈ {0, 1, 2}

Decimal value:
∑̀
i=0

di 2i

410 = 1002 = 0122 = 0202

Carry: 22222222
+1

111111111

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 12 / 19

Redundant Binary Numbers

Binary numbers:

d = d`d`−1 . . . d1d0

di ∈ {0, 1}

Decimal value:
∑̀
i=0

di 2i

Carry: 11111111
+1

100000000

Redundant bin. numbers:

d = d`d`−1 . . . d1d0

di ∈ {0, 1, 2}

Decimal value:
∑̀
i=0

di 2i

410 = 1002 = 0122 = 0202

Carry: 22222222
+1

111111111

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 12 / 19

Regular Redundant Binary Numbers

Definition
A redundant binary number is regular, iff between two 0’s is one
2 and vice versa.

Property 1
Adding or subtracting 2i to a RRBN causes at most one carry.

Problem:
After adding/subtracting, a RRBN may become irregular

0112110
+ 10
= 0112120

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 13 / 19

Regular Redundant Binary Numbers

Definition
A redundant binary number is regular, iff between two 0’s is one
2 and vice versa.

Property 1
Adding or subtracting 2i to a RRBN causes at most one carry.

Problem:
After adding/subtracting, a RRBN may become irregular

0112110
+ 10
= 0112120

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 13 / 19

Regular Redundant Binary Numbers

Definition
A redundant binary number is regular, iff between two 0’s is one
2 and vice versa.

Property 1
Adding or subtracting 2i to a RRBN causes at most one carry.

Problem:
After adding/subtracting, a RRBN may become irregular

0112110
+ 10
= 0112120

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 13 / 19

Regular Redundant Binary Numbers

Definition
A redundant binary number is regular, iff between two 0’s is one
2 and vice versa.

Property 1
Adding or subtracting 2i to a RRBN causes at most one carry.

Problem:
After adding/subtracting, a RRBN may become irregular

0112110
+ 10
= 0112120

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 13 / 19

Regular Redundant Binary Numbers

Property 2
We can fix an irregular RBN by changing O(1) digits.

0...12...0...2... 2...02...0...2...
+ 1 + 1
= 0...12...1...2... = 2...02...1...2...

↓↓ ↓↓
= 0...20...1...2... = 2...10...1...2...

’...’ = sequence of 1’s

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 14 / 19

Regular Redundant Binary Numbers

Property 2
We can fix an irregular RBN by changing O(1) digits.

0...12...0...2... 2...02...0...2...
+ 1 + 1
= 0...12...1...2... = 2...02...1...2...

↓↓ ↓↓
= 0...20...1...2... = 2...10...1...2...

’...’ = sequence of 1’s

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 14 / 19

Regular Redundant Binary Numbers

Property 2
We can fix an irregular RBN by changing O(1) digits.

0...12...0...2... 2...02...0...2...
+ 1 + 1
= 0...12...1...2... = 2...02...1...2...

↓↓ ↓↓
= 0...20...1...2... = 2...10...1...2...

’...’ = sequence of 1’s

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 14 / 19

Regular Redundant Binary Numbers

Property 2
We can fix an irregular RBN by changing O(1) digits.

0...12...0...2... 2...02...0...2...
+ 1 + 1
= 0...12...1...2... = 2...02...1...2...

↓↓ ↓↓
= 0...20...1...2... = 2...10...1...2...

’...’ = sequence of 1’s

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 14 / 19

Regular Redundant Binary Numbers

Property 2
We can fix an irregular RBN by changing O(1) digits.

0...12...0...2... 2...02...0...2...
+ 1 + 1
= 0...12...1...2... = 2...02...1...2...

↓↓ ↓↓
= 0...20...1...2... = 2...10...1...2...

’...’ = sequence of 1’s

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 14 / 19

Regular Redundant Binary Numbers

Property 2
We can fix an irregular RBN by changing O(1) digits.

0...12...0...2... 2...02...0...2...
+ 1 + 1
= 0...12...1...2... = 2...02...1...2...

↓↓ ↓↓
= 0...20...1...2... = 2...10...1...2...

’...’ = sequence of 1’s

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 14 / 19

Regular Redundant Binary Numbers

Property 2
We can fix an irregular RBN by changing O(1) digits.

0...12...0...2... 2...02...0...2...
+ 1 + 1
= 0...12...1...2... = 2...02...1...2...

↓↓ ↓↓
= 0...20...1...2... = 2...10...1...2...

’...’ = sequence of 1’s

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 14 / 19

Regular Redundant Binary Numbers

Property 2
We can fix an irregular RBN by changing O(1) digits.

0...12...0...2... 2...02...0...2...
+ 1 + 1
= 0...12...1...2... = 2...02...1...2...

↓↓ ↓↓
= 0...20...1...2... = 2...10...1...2...

’...’ = sequence of 1’s

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 14 / 19

Regular Redundant Binary Numbers

Property 2
We can fix an irregular RBN by changing O(1) digits.

0...12...0...2... 2...02...0...2...
+ 1 + 1
= 0...12...1...2... = 2...02...1...2...

↓↓ ↓↓
= 0...20...1...2... = 2...10...1...2...

’...’ = sequence of 1’s

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 14 / 19

Regular Redundant Binary Numbers

Property 2
We can fix an irregular RBN by changing O(1) digits.

0...12...0...2... 2...02...0...2...
+ 1 + 1
= 0...12...1...2... = 2...02...1...2...

↓↓ ↓↓
= 0...20...1...2... = 2...10...1...2...

’...’ = sequence of 1’s

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 14 / 19

ClassSort

Class Ci reserves si ∈ {0, 1, 2} free slots
Consider S = sa . . . s1s0 as redundant binary number

Adding/removing module to Ci : S := S ∓ 2i

Keep S regular (by splitting/merging free slots)
⇒ O(1) splits (merges) per insertion (deletion)

Theorem
m̂: largest module, cost of move linear in the module’s size.

ClassSort performs O(1) moves per insertion and deletion
Amortized cost for inserting or deleting a module of size mi

are O(mi log m̂).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 15 / 19

ClassSort

Class Ci reserves si ∈ {0, 1, 2} free slots
Consider S = sa . . . s1s0 as redundant binary number

Adding/removing module to Ci : S := S ∓ 2i

Keep S regular (by splitting/merging free slots)
⇒ O(1) splits (merges) per insertion (deletion)

Theorem
m̂: largest module, cost of move linear in the module’s size.

ClassSort performs O(1) moves per insertion and deletion
Amortized cost for inserting or deleting a module of size mi

are O(mi log m̂).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 15 / 19

ClassSort

Class Ci reserves si ∈ {0, 1, 2} free slots
Consider S = sa . . . s1s0 as redundant binary number

Adding/removing module to Ci : S := S ∓ 2i

Keep S regular (by splitting/merging free slots)
⇒ O(1) splits (merges) per insertion (deletion)

Theorem
m̂: largest module, cost of move linear in the module’s size.

ClassSort performs O(1) moves per insertion and deletion
Amortized cost for inserting or deleting a module of size mi

are O(mi log m̂).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 15 / 19

ClassSort

Class Ci reserves si ∈ {0, 1, 2} free slots
Consider S = sa . . . s1s0 as redundant binary number

Adding/removing module to Ci : S := S ∓ 2i

Keep S regular (by splitting/merging free slots)
⇒ O(1) splits (merges) per insertion (deletion)

Theorem
m̂: largest module, cost of move linear in the module’s size.

ClassSort performs O(1) moves per insertion and deletion
Amortized cost for inserting or deleting a module of size mi

are O(mi log m̂).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 15 / 19

ClassSort

Class Ci reserves si ∈ {0, 1, 2} free slots
Consider S = sa . . . s1s0 as redundant binary number

Adding/removing module to Ci : S := S ∓ 2i

Keep S regular (by splitting/merging free slots)
⇒ O(1) splits (merges) per insertion (deletion)

Theorem
m̂: largest module, cost of move linear in the module’s size.

ClassSort performs O(1) moves per insertion and deletion
Amortized cost for inserting or deleting a module of size mi

are O(mi log m̂).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 15 / 19

ClassSort

Class Ci reserves si ∈ {0, 1, 2} free slots
Consider S = sa . . . s1s0 as redundant binary number

Adding/removing module to Ci : S := S ∓ 2i

Keep S regular (by splitting/merging free slots)
⇒ O(1) splits (merges) per insertion (deletion)

Theorem
m̂: largest module, cost of move linear in the module’s size.

ClassSort performs O(1) moves per insertion and deletion
Amortized cost for inserting or deleting a module of size mi

are O(mi log m̂).

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 15 / 19

LocalShift (Heuristic)

Distance between two blocks (module/free space) :=
number of blocks in between
k-neighborhood: set of blocks with distance ≤ k
Heuristic:

Use Best-Fit if possible
For every block of free space F

(Imaginarily) shift blocks in k -neighborhood away from F
If sufficient free space would be created: shift and insert

F

3-neighborhood of F

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 16 / 19

LocalShift (Heuristic)

Distance between two blocks (module/free space) :=
number of blocks in between
k-neighborhood: set of blocks with distance ≤ k
Heuristic:

Use Best-Fit if possible
For every block of free space F

(Imaginarily) shift blocks in k -neighborhood away from F
If sufficient free space would be created: shift and insert

F

3-neighborhood of F

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 16 / 19

LocalShift (Heuristic)

Distance between two blocks (module/free space) :=
number of blocks in between
k-neighborhood: set of blocks with distance ≤ k
Heuristic:

Use Best-Fit if possible
For every block of free space F

(Imaginarily) shift blocks in k -neighborhood away from F
If sufficient free space would be created: shift and insert

F

3-neighborhood of F

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 16 / 19

LocalShift (Heuristic)

Distance between two blocks (module/free space) :=
number of blocks in between
k-neighborhood: set of blocks with distance ≤ k
Heuristic:

Use Best-Fit if possible
For every block of free space F

(Imaginarily) shift blocks in k -neighborhood away from F
If sufficient free space would be created: shift and insert

F

3-neighborhood of F

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 16 / 19

LocalShift (Heuristic)

Distance between two blocks (module/free space) :=
number of blocks in between
k-neighborhood: set of blocks with distance ≤ k
Heuristic:

Use Best-Fit if possible
For every block of free space F

(Imaginarily) shift blocks in k -neighborhood away from F
If sufficient free space would be created: shift and insert

F

3-neighborhood of F

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 16 / 19

LocalShift (Heuristic)

Distance between two blocks (module/free space) :=
number of blocks in between
k-neighborhood: set of blocks with distance ≤ k
Heuristic:

Use Best-Fit if possible
For every block of free space F

(Imaginarily) shift blocks in k -neighborhood away from F
If sufficient free space would be created: shift and insert

F

3-neighborhood of F

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 16 / 19

LocalShift (Heuristic)

Distance between two blocks (module/free space) :=
number of blocks in between
k-neighborhood: set of blocks with distance ≤ k
Heuristic:

Use Best-Fit if possible
For every block of free space F

(Imaginarily) shift blocks in k -neighborhood away from F
If sufficient free space would be created: shift and insert

F

3-neighborhood of F

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 16 / 19

LocalShift (Heuristic)

Distance between two blocks (module/free space) :=
number of blocks in between
k-neighborhood: set of blocks with distance ≤ k
Heuristic:

Use Best-Fit if possible
For every block of free space F

(Imaginarily) shift blocks in k -neighborhood away from F
If sufficient free space would be created: shift and insert

F

3-neighborhood of F

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 16 / 19

LocalShift (Heuristic)

Distance between two blocks (module/free space) :=
number of blocks in between
k-neighborhood: set of blocks with distance ≤ k
Heuristic:

Use Best-Fit if possible
For every block of free space F

(Imaginarily) shift blocks in k -neighborhood away from F
If sufficient free space would be created: shift and insert

F

3-neighborhood of F

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 16 / 19

LocalShift (Heuristic)

Distance between two blocks (module/free space) :=
number of blocks in between
k-neighborhood: set of blocks with distance ≤ k
Heuristic:

Use Best-Fit if possible
For every block of free space F

(Imaginarily) shift blocks in k -neighborhood away from F
If sufficient free space would be created: shift and insert

F

3-neighborhood of F

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 16 / 19

LocalShift (Heuristic)

Distance between two blocks (module/free space) :=
number of blocks in between
k-neighborhood: set of blocks with distance ≤ k
Heuristic:

Use Best-Fit if possible
For every block of free space F

(Imaginarily) shift blocks in k -neighborhood away from F
If sufficient free space would be created: shift and insert

F

3-neighborhood of F

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 16 / 19

LocalShift (Heuristic)

Distance between two blocks (module/free space) :=
number of blocks in between
k-neighborhood: set of blocks with distance ≤ k
Heuristic:

Use Best-Fit if possible
For every block of free space F

(Imaginarily) shift blocks in k -neighborhood away from F
If sufficient free space would be created: shift and insert

F

3-neighborhood of F

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 16 / 19

LocalShift (Heuristic)

Distance between two blocks (module/free space) :=
number of blocks in between
k-neighborhood: set of blocks with distance ≤ k
Heuristic:

Use Best-Fit if possible
For every block of free space F

(Imaginarily) shift blocks in k -neighborhood away from F
If sufficient free space would be created: shift and insert

F

3-neighborhood of F

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 16 / 19

LocalShift (Heuristic)

Distance between two blocks (module/free space) :=
number of blocks in between
k-neighborhood: set of blocks with distance ≤ k
Heuristic:

Use Best-Fit if possible
For every block of free space F

(Imaginarily) shift blocks in k -neighborhood away from F
If sufficient free space would be created: shift and insert

F

3-neighborhood of F

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 16 / 19

LocalShift (Heuristic)

Distance between two blocks (module/free space) :=
number of blocks in between
k-neighborhood: set of blocks with distance ≤ k
Heuristic:

Use Best-Fit if possible
For every block of free space F

(Imaginarily) shift blocks in k -neighborhood away from F
If sufficient free space would be created: shift and insert

F

3-neighborhood of F

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 16 / 19

Comparison

 0

 20

 40

 60

 80

 100

 120

 100 150 200 250 300 350 400 450 500

Size exponentially

Moves, Duration exponentially
BestFit
FirstFit

LocalShift
AlwaysSorted

DelayedSort
ClassSort

 0

 50

 100

 150

 200

 250

 300

 100 150 200 250 300 350 400 450 500

Size exponentially

Mass, Duration exponentially

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 100 150 200 250 300 350 400 450 500

Size exponentially

Time, Duration exponentially

Array size: N = 210; k = 8 (LocalShift); 100000 modules per sequence; Expected duration: 300 units

Moves/Mass×10.000, Time: ×300.000

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 17 / 19

Conclusion

LocalShift performs very well
Sorting strategies need a lot number of moves, but achieve
the best makespan
ClassSort reduces number of moves, but needs much time

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 18 / 19

Thank you!

Tom Kamphans (TU Braunschweig) Maintaining Arrays of Contiguous Objects FCT 2009 19 / 19

	Introduction
	Algorithms

