Exploring Simple Triangular and Hexagonal Grid Polygons Online

Daniel Herrmann¹ **Tom Kamphans**² Elmar Langetepe¹

¹University of Bonn, Computer Science I, Bonn, Germany.

²Braunschweig University of Technology, Computer Science, Algorithms Group, Braunschweig, Germany.

19.3.2008

Tom Kamphans (TU Braunschweig)

Exploring Simple Grid Polygons

19.3.2008 1/24

Environment

- Convenient for motion planning tasks:
 - Subdivide env. by integer grid
- E.g.: cell size ≈ size of robot's tool
- Simple \Leftrightarrow No holes

Environment

• Convenient for motion planning tasks:

Subdivide env. by integer grid

- E.g.: cell size ≈ size of robot's tool
- Simple \Leftrightarrow No holes

∃ >

Environment

- Convenient for motion planning tasks:
 - Subdivide env. by integer grid
- E.g.: cell size ≈ size of robot's tool
- Simple \Leftrightarrow No holes

Environment

- Convenient for motion planning tasks:
 - Subdivide env. by integer grid
- E.g.: cell size ≈ size of robot's tool
- Simple ⇔ No holes

Environment

• Convenient for motion planning tasks:

Subdivide env. by integer grid

- E.g.: cell size ≈ size of robot's tool
- Simple \Leftrightarrow No holes

Environment

• Convenient for motion planning tasks:

Subdivide env. by integer grid

- E.g.: cell size ≈ size of robot's tool
- Simple \Leftrightarrow No holes

Environment

• Convenient for motion planning tasks:

Subdivide env. by integer grid

- E.g.: cell size ≈ size of robot's tool
- Simple \Leftrightarrow No holes

• Usually: Square grids

Other regular tilings: hexagonal / triangular grids

• Agent:

- No vision
- Sense adjacent cells
- Move to free, adjacent cell

- Usually: Square grids
- Other regular tilings: hexagonal / triangular grids

• Agent:

- No vision
- Sense adjacent cells
- Move to free, adjacent cell

- Usually: Square grids
- Other regular tilings: hexagonal / triangular grids

Agent:

- No vision
- Sense adjacent cells
- Move to free, adjacent cell

- Usually: Square grids
- Other regular tilings: hexagonal / triangular grids

Agent:

- No vision
- Sense adjacent cells
- Move to free, adjacent cell

- Usually: Square grids
- Other regular tilings: hexagonal / triangular grids
- Agent:
 - No vision
 - Sense adjacent cells
 - Move to free, adjacent cell

- Usually: Square grids
- Other regular tilings: hexagonal / triangular grids

Agent:

- No vision
- Sense adjacent cells
- Move to free, adjacent cell

Online exploration (or covering):

• Given: an unknown grid environment, *P* start cell, *s*, along the boundary

• Task: Find a tour that

- visits every cell of P at least once
- returns to the start point
- can be computed online
- is as short as possible

• For example: lawn mowing, cleaning

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Online exploration (or covering):

• Given: an unknown grid environment, P

start cell, s, along the boundary

• Task: Find a tour that

- visits every cell of P at least once
- returns to the start point
- can be computed online
- is as short as possible

• For example: lawn mowing, cleaning

Online exploration (or covering):

• Given: an unknown grid environment, P

- Task: Find a tour that
 - visits every cell of P at least once
 - returns to the start point
 - can be computed online
 - is as short as possible
- For example: lawn mowing, cleaning

Online exploration (or covering):

• Given: an unknown grid environment, P

- Task: Find a tour that
 - visits every cell of P at least once
 - returns to the start point
 - can be computed online
 - is as short as possible
- For example: lawn mowing, cleaning

Online exploration (or covering):

• Given: an unknown grid environment, P

- Task: Find a tour that
 - visits every cell of P at least once
 - returns to the start point
 - can be computed online
 - is as short as possible
- For example: lawn mowing, cleaning

Online exploration (or covering):

• Given: an unknown grid environment, P

- Task: Find a tour that
 - visits every cell of P at least once
 - returns to the start point
 - can be computed online
 - is as short as possible
- For example: lawn mowing, cleaning

Previous Work (square grids)

Offline exploration (environment is known in advance)

- With holes: NP-hard [Itai, Papadimitriou, Szwarcfiter; 1982]
- Approx. [Ntafos; 1992] [Arkin, Fekete, Mitchell; 2000]

Online exploration

- With holes: [Icking, Kamphans, Klein, Langetepe; 2000]: 2-competitive [Gabriely, Rimon; 2000]
 - Without holes:

[Icking, Kamphans, Klein, Langetepe; 2005]: $\frac{4}{3}$ -competitive

Previous Work (square grids)

Offline exploration (environment is known in advance)

- With holes: NP-hard [Itai, Papadimitriou, Szwarcfiter; 1982]
- Approx. [Ntafos; 1992] [Arkin, Fekete, Mitchell; 2000]

Online exploration

 With holes: [Icking, Kamphans, Klein, Langetepe; 2000]: 2-competitive [Gabriely, Rimon; 2000]

Without holes: [Icking, Kamphans, Klein, Langetepe; 2005]: ⁴/₃-competitive

A Lower Bound

Problem:

Online exploration of simple hexagonal/ triangular grid polygons

Theorem

No online exploration strategy achieves a competitive factor better than

- $\frac{7}{6}$ in simple **triangular** grid polygon.
- $\frac{14}{13}$ in simple **hexagonal** grid polygon.

Lower bound for polygons with holes: 2 [IKKL 2000]

A Lower Bound

Problem:

Online exploration of simple hexagonal/ triangular grid polygons

Theorem

No online exploration strategy achieves a competitive factor better than

- $\frac{7}{6}$ in simple **triangular** grid polygon.
- $\frac{14}{13}$ in simple **hexagonal** grid polygon.

Lower bound for polygons with holes: 2 [IKKL 2000]

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

South or East

< 17 ▶

East

< 🗇 🕨 < 🖃 >

East

< 🗇 🕨 < 🖃 >

2 Possibilities: South

2 Possibilities: South, East

Close polygon

4 A N

Online vs. Optimal

Close polygon

4 A N

Online vs. Optimal

4 A N

2 Possibilities: South, East

Close polygon

< 🗇 🕨 < 🖃 >

Online vs. Optimal

< 🗇 🕨 < 🖃 🕨

Close polygon

4 A N

Online vs. Optimal

< (□) < 三 > (□)

< 47 ▶

э

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Leave boundary

< 🗇 🕨 < 🖃 >

Follow boundary

< 47 ▶

-

Close block

< 🗇 🕨 < 🖃 >

Online vs. Optimal

 $\frac{7}{6}$

4 A N

Close block

 $\frac{7}{6}$

< 🗇 🕨 < 🖃 🕨

Online vs. Optimal

• First idea: Apply depth-first search (DFS)

- Left-hand rule: keep boundary and visited cell on the left side.
- Visits each cell twice!

- First idea: Apply depth-first search (DFS)
- Left-hand rule: keep boundary and visited cell on the left side.
- Visits each cell twice!

- First idea: Apply depth-first search (DFS)
- Left-hand rule: keep boundary and visited cell on the left side.
- Visits each cell twice!

- DFS visits each cell twice
- More reasonable: Return directly to unvisited cell
- Improved DFS

Improvement 1

Return directly to those cells that have unexplored neighbors.

DFS visits each cell twice

- More reasonable: Return directly to unvisited cell
- Improved DFS

Improvement 1

Return directly to those cells that have unexplored neighbors.

< 🗇 🕨 < 🖃 🕨

- DFS visits each cell twice
- More reasonable: Return directly to unvisited cell
- Improved DFS

Improvement 1

Return directly to those cells that have unexplored neighbors.

< □ > < □ > < □ > < □ >

- DFS visits each cell twice
- More reasonable: Return directly to unvisited cell
- Improved DFS

Improvement 1

Return directly to those cells that have unexplored neighbors.

- DFS visits each cell twice
- More reasonable: Return directly to unvisited cell
- Improved DFS

Improvement 1

Return directly to those cells that have unexplored neighbors.

Tom Kamphans (TU Braunschweig)

Exploring Simple Grid Polygons

19.3.2008 10/24

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2

Detect and handle split cells (i. e., prefer parts of *P* farther away from the start).

Tom Kamphans (TU Braunschweig)

Exploring Simple Grid Polygons

19.3.2008 11 / 24

DFS visits long corridor four times

- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2

Detect and handle split cells (i. e., prefer parts of *P* farther away from the start).

Tom Kamphans (TU Braunschweig)

Exploring Simple Grid Polygons

19.3.2008 11 / 24

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to *s*
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to *s*
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2

Detect and handle split cells (i. e., prefer parts of P farther away from the start).

Tom Kamphans (TU Braunschweig)

Exploring Simple Grid Polygons

- First layer := Boundary cells of P
- 1-offset :=
 P without first layer
- Analogously: Second layer
- 2-offset and so on

• *E*(*P*): #edges between free and blocked cells

Lemma (Number of edges in offsets)

P' is ℓ -offset of $P \Rightarrow E(P') \leq E(P) - 2k\ell$

(*k* ∈ {3, 4, 6} for \triangle , \Box , \bigcirc).

First layer := Boundary cells of P

- 1-offset :=
 P without first layer
- Analogously: Second layer
- 2-offset and so on

A D M A A A M M

• *E*(*P*): #edges between free and blocked cells

Lemma (Number of edges in offsets)

P' is ℓ -offset of $P \Rightarrow E(P') \leq E(P) - 2k\ell$

 $(k \in \{3,4,6\} \text{ for } \triangle, \Box, \bigcirc).$

- ∢ ∃ ▶

- First layer := Boundary cells of P
- 1-offset :=
 P without first layer
- Analogously: Second layer
- 2-offset and so on
- *E*(*P*): #edges between free and blocked cells

Lemma (Number of edges in offsets)

P' is ℓ -offset of $P \Rightarrow E(P') \leq E(P) - 2k\ell$

 $(k \in \{3,4,6\} \text{ for } \triangle, \Box, \bigcirc).$

- First layer := Boundary cells of P
- 1-offset :=
 P without first layer
- Analogously: Second layer
- 2-offset and so on

A D M A A A M M

• *E*(*P*): #edges between free and blocked cells

Lemma (Number of edges in offsets)

P' is ℓ -offset of $P \Rightarrow E(P') \leq E(P) - 2k\ell$

 $(k \in \{3,4,6\} \text{ for } \triangle, \Box, \bigcirc).$

- ∢ ∃ ▶

- First layer := Boundary cells of P
- 1-offset :=
 P without first layer
- Analogously: Second layer
- 2-offset and so on
- *E*(*P*): #edges between free and blocked cells

Lemma (Number of edges in offsets)

P' is ℓ -offset of $P \Rightarrow E(P') \leq E(P) - 2k\ell$

 $(k \in \{3, 4, 6\} \text{ for } \triangle, \Box, \bigcirc).$
Layer and Offset

- First layer := Boundary cells of P
- 1-offset :=
 P without first layer
- Analogously: Second layer
- 2-offset and so on
- *E*(*P*): #edges between free and blocked cells

Lemma (Number of edges in offsets)

P' is ℓ -offset of $P \Rightarrow E(P') \leq E(P) - 2k\ell$

 $(k \in \{3, 4, 6\} \text{ for } \triangle, \Box, \bigcirc).$

Layer and Offset

- First layer := Boundary cells of P
- 1-offset :=
 P without first layer
- Analogously: Second layer
- 2-offset and so on

A D M A A A M M

• *E*(*P*): #edges between free and blocked cells

Lemma (Number of edges in offsets)

P' is ℓ -offset of $P \Rightarrow E(P') \leq E(P) - 2k\ell$

(*k* ∈ {3, 4, 6} for \triangle , \Box , \bigcirc).

- 3 →

Tom Kamphans (TU Braunschweig)

Layer and Offset

- First layer := Boundary cells of P
- 1-offset :=
 P without first layer
- Analogously: Second layer
- 2-offset and so on
- *E*(*P*): #edges between free and blocked cells

Lemma (Number of edges in offsets)

P' is ℓ -offset of $P \Rightarrow E(P') \leq E(P) - 2k\ell$

($k \in \{3, 4, 6\}$ for \triangle , \Box , \bigcirc).

Lemma (Shortest Path)

Shortest path between two cells in P:

- $sp(s,t) \leq E(P) 3$
- $sp(s,t) \leq \frac{1}{4}E(P) \frac{3}{2}$ (hexagonal grids)

Proof idea.

Worst case: -- s, t in the first layer
 Path length ≤ ½-#cells in the first layer
 Charge cells in the first layer against E(P)

(triangular grids)

Lemma (Shortest Path)

Shortest path between two cells in P:

- $sp(s, t) \le E(P) 3$ (triangular grids)
- $sp(s,t) \leq \frac{1}{4}E(P) \frac{3}{2}$ (hexagonal grids)

Proof idea.

- Worst case: s, t in the first layer
 - Path length $\leq rac{1}{2}\cdot$ #cells in the first layer
- Charge cells in the first layer against *E*(*P*)

Lemma (Shortest Path)

Shortest path between two cells in P:

- $sp(s, t) \le E(P) 3$ (triangular grids)
- $sp(s,t) \leq \frac{1}{4}E(P) \frac{3}{2}$ (hexagonal grids)

Proof idea.

- Worst case: s, t in the first layer
 - Path length $\leq rac{1}{2}$ · #cells in the first layer
- Charge cells in the first layer against E(P)

Lemma (Shortest Path)

Shortest path between two cells in P:

- $sp(s, t) \le E(P) 3$ (triangular grids)
- $sp(s,t) \leq \frac{1}{4}E(P) \frac{3}{2}$ (hexagonal grids)

Proof idea.

- Worst case: s, t in the first layer
 - Path length $\leq \frac{1}{2} \cdot$ #cells in the first layer

• Charge cells in the first layer against E(P)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma (Shortest Path)

Shortest path between two cells in P:

- $sp(s, t) \le E(P) 3$ (triangular grids)
- $sp(s,t) \leq \frac{1}{4}E(P) \frac{3}{2}$ (hexagonal grids)

Proof idea.

- Worst case: s, t in the first layer
 - Path length $\leq \frac{1}{2} \cdot$ #cells in the first layer
- Charge cells in the first layer against E(P)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Upper for the Number of Steps

Theorem (Number of Steps)

$$S(P) \le C(P) + E(P) - 4$$
 (Triangular grids)
 $S(P) \le C(P) + rac{1}{4}E(P) - rac{5}{2}$ (Hexagonal grids)

(S(P): #Steps from cell to cell, C(P): #Cells, E(P): #Boundary edges)

This bound is exactly achieved in corridors of width 1.

• Return to s in $\leq E(P) - 3$ steps (Shortest-path lemma)

S(P) = C(P) + ex(P) Cells, i.e., necessary steps additional cell visits Show: ex(P) ≤ E(P) - 4 (triang.)

- Induction on the number of split cells
- Induction base: No split cell
- Visit every cell in C(P) 1 steps
- Return to s in $\leq E(P) 3$ steps (Shortest-path lemma)

• $S(P) = \underbrace{C(P)}_{\text{Cells, i.e., necessary steps}} + \underbrace{ex(P)}_{\text{additional cell visits}}$ • Show: $ex(P) \le E(P) - 4$ (triang.)

- Induction on the number of split cells
- Induction base: No split cell
- Visit every cell in C(P) 1 steps
- Return to s in $\leq E(P) 3$ steps (Shortest-path lemma)

S(P) = C(P) + ex(P) Cells, i.e., necessary steps additional cell visits Show: ex(P) ≤ E(P) - 4 (triang.)

- Induction on the number of split cells
- Induction base: No split cell
- Visit every cell in C(P) 1 steps
- Return to s in $\leq E(P) 3$ steps (Shortest-path lemma)

• $S(P) = \underbrace{C(P)}_{\text{Cells, i.e., necessary steps}} + \underbrace{ex(P)}_{\text{additional cell visits}}$ • Show: $ex(P) \le E(P) - 4$ (triang.)

- Induction on the number of split cells
- Induction base: No split cell
- Visit every cell in C(P) 1 steps
- Return to s in $\leq E(P) 3$ steps (Shortest-path lemma)

- Induction on the number of split cells
- Induction base: No split cell
- Visit every cell in C(P) 1 steps
- Return to s in $\leq E(P) 3$ steps (Shortest-path lemma)

Induction step:

- Explore up to the first split cell, c
- Enlarge *c* to boundary (add layers)
- Split polygon in two parts: P₁, P₂
- Path outside Q do not change
- K₂ unexplored part of P₂
- Path in $P_2 \setminus K_2$ visits no cell twice
- Apply induction hypothesis to P₁ and K₂ ∪ {c}
- Charge edges of P_1 , K_2 , Q to E(P)

▲ 同 ▶ → 三 ▶

Split cell c

Induction step:

- Explore up to the first split cell, c
- Enlarge *c* to boundary (add layers)
- Split polygon in two parts: P₁, P₂
- Path outside Q do not change
- K₂ unexplored part of P₂
- Path in $P_2 \setminus K_2$ visits no cell twice
- Apply induction hypothesis to P₁ and K₂ ∪ {c}
- Charge edges of P_1 , K_2 , Q to E(P)

▲ 同 ▶ → 三 ▶

Split cell c Split polygon Q

Induction step:

- Explore up to the first split cell, c
- Enlarge c to boundary (add layers)
- Split polygon in two parts: P₁, P₂
- Path outside Q do not change
- K₂ unexplored part of P₂
- Path in $P_2 \setminus K_2$ visits no cell twice
- Apply induction hypothesis to P₁ and K₂ ∪ {c}
- Charge edges of P_1 , K_2 , Q to E(P)

Induction step:

- Explore up to the first split cell, c
- Enlarge c to boundary (add layers)
- Split polygon in two parts: P₁, P₂
- Path outside Q do not change
- K₂ unexplored part of P₂
- Path in $P_2 \setminus K_2$ visits no cell twice
- Apply induction hypothesis to P₁ and K₂ ∪ {c}
- Charge edges of P_1 , K_2 , Q to E(P)

Induction step:

- Explore up to the first split cell, c
- Enlarge c to boundary (add layers)
- Split polygon in two parts: P₁, P₂
- Path outside Q do not change
- K₂ unexplored part of P₂
- Path in $P_2 \setminus K_2$ visits no cell twice
- Apply induction hypothesis to P₁ and K₂ ∪ {c}
- Charge edges of P_1 , K_2 , Q to E(P)

Induction step:

- Explore up to the first split cell, c
- Enlarge c to boundary (add layers)
- Split polygon in two parts: P₁, P₂
- Path outside Q do not change
- K₂ unexplored part of P₂
- Path in $P_2 \setminus K_2$ visits no cell twice
- Apply induction hypothesis to P₁ and K₂ ∪ {c}
- Charge edges of P_1 , K_2 , Q to E(P)

Induction step:

- Explore up to the first split cell, c
- Enlarge c to boundary (add layers)
- Split polygon in two parts: P₁, P₂
- Path outside Q do not change
- K₂ unexplored part of P₂
- Path in $P_2 \setminus K_2$ visits no cell twice
- Apply induction hypothesis to P₁ and K₂ ∪ {c}
- Charge edges of P_1 , K_2 , Q to E(P)

Induction step:

- Explore up to the first split cell, c
- Enlarge c to boundary (add layers)
- Split polygon in two parts: P₁, P₂
- Path outside Q do not change
- K₂ unexplored part of P₂
- Path in $P_2 \setminus K_2$ visits no cell twice
- Apply induction hypothesis to P₁ and K₂ ∪ {c}
- Charge edges of P_1 , K_2 , Q to E(P)

< 🗇 🕨 < 🖻 🕨

Induction step:

- Explore up to the first split cell, c
- Enlarge c to boundary (add layers)
- Split polygon in two parts: P₁, P₂
- Path outside Q do not change
- K₂ unexplored part of P₂
- Path in $P_2 \setminus K_2$ visits no cell twice
- Apply induction hypothesis to P₁ and K₂ ∪ {c}
- Charge edges of P_1 , K_2 , Q to E(P)

- ∢ ∃ ▶

Competitivity, hexagonal and triangular grids

Theorem (Competitivity)

SmartDFS is
$$\frac{4}{3}$$
 competitive (i. e., S_{SmartDFS} $\leq \frac{4}{3}$ S_{Optimal})

Definition

Narrow passage: Corridors of width 1 or 2.

Definition

Uncritical polygon: neither narrow passages nor split cells in the first layer.

< ロ > < 同 > < 回 > < 回 >

Competitivity, hexagonal and triangular grids

Theorem (Competitivity)

SmartDFS is
$$\frac{4}{3}$$
 competitive (i. e., S_{SmartDFS} $\leq \frac{4}{3}$ S_{Optimal})

Definition

Narrow passage: Corridors of width 1 or 2.

Definition

Uncritical polygon: neither narrow passages nor split cells in the first layer.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Competitivity, hexagonal and triangular grids

Theorem (Competitivity)

SmartDFS is
$$rac{4}{3}$$
 competitive (i. e., S_{SmartDFS} $\leq rac{4}{3}$ S_{Optimal})

Definition

Narrow passage: Corridors of width 1 or 2.

Definition

Uncritical polygon: neither narrow passages nor split cells in the first layer.

< ロ > < 同 > < 回 > < 回 >

Lemma (Edges in uncritical triangular polygons)

For uncritical grid polygons: $E(P) \leq \frac{1}{3}C(P) + \frac{14}{3}$

Proof idea.

 Successively remove straight line of at least 3 cells (thus at most 1 edge), maintaining the property 'uncritical'

- Ends with 'diamond' polygon, $E(P) = \frac{1}{3}C(P) + \frac{14}{3}$
- Adding removed lines maintains E(P) ≤ ¹/₃C(P) + ¹⁴/₃ in every step

Lemma (Edges in uncritical triangular polygons)

For uncritical grid polygons: $E(P) \leq \frac{1}{3}C(P) + \frac{14}{3}$

Proof idea.

- Successively remove straight line of at least 3 cells (thus at most 1 edge), maintaining the property 'uncritical'
- Ends with 'diamond' polygon, $E(P) = \frac{1}{3}C(P) + \frac{14}{3}$
- Adding removed lines maintains E(P) ≤ ¹/₃C(P) + ¹⁴/₃ in every step

< ロ > < 同 > < 回 > < 回 >

Lemma (Edges in uncritical triangular polygons)

For uncritical grid polygons: $E(P) \leq \frac{1}{3}C(P) + \frac{14}{3}$

Proof idea.

- Successively remove straight line of at least 3 cells (thus at most 1 edge), maintaining the property 'uncritical'
- Ends with 'diamond' polygon, $E(P) = \frac{1}{3}C(P) + \frac{14}{3}$
- Adding removed lines maintains E(P) ≤ ¹/₃C(P) + ¹⁴/₃ in every step

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma (Edges in uncritical triangular polygons)

For uncritical grid polygons: $E(P) \leq \frac{1}{3}C(P) + \frac{14}{3}$

Proof idea.

- Successively remove straight line of at least 3 cells (thus at most 1 edge), maintaining the property 'uncritical'
- Ends with 'diamond' polygon, $E(P) = \frac{1}{3}C(P) + \frac{14}{3}$
- Adding removed lines maintains $E(P) \leq \frac{1}{3}C(P) + \frac{14}{3}$ in every step

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma (Exploration of uncritical polygons)

For uncritical triangular grid polygons: $S(P) \leq C(P) + E(P) - 6$.

Proof sketch

- Shown: $S(P) \le C(P) + E(P) 4$
- Used shortest path lemma: $sp(c, s) \le E(P) 4$
- Proof assumed *c*, *s* in the first layer!
- Now: c in the 1-offset
- 2 steps gained!

Lemma (Exploration of uncritical polygons)

For uncritical triangular grid polygons: $S(P) \leq C(P) + E(P) - 6$.

Proof sketch

- Shown: $S(P) \leq C(P) + E(P) 4$
- Used shortest path lemma: $sp(c, s) \le E(P) 4$
- Proof assumed *c*, *s* in the first layer!
- Now: c in the 1-offset
- 2 steps gained!

< ロ > < 同 > < 回 > < 回 >

Lemma (Exploration of uncritical polygons)

For uncritical triangular grid polygons: $S(P) \leq C(P) + E(P) - 6$.

Proof sketch

- Shown: $S(P) \leq C(P) + E(P) 4$
- Used shortest path lemma: $sp(c, s) \le E(P) 4$
- Proof assumed *c*, *s* in the first layer!
- Now: c in the 1-offset
- 2 steps gained!

< ロ > < 同 > < 回 > < 回 >

Lemma (Exploration of uncritical polygons)

For uncritical triangular grid polygons: $S(P) \leq C(P) + E(P) - 6$.

Proof sketch

- Shown: $S(P) \leq C(P) + E(P) 4$
- Used shortest path lemma: $sp(c, s) \le E(P) 4$
- Proof assumed *c*, *s* in the first layer!
- Now: c in the 1-offset
- 2 steps gained!

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma (Exploration of uncritical polygons)

For uncritical triangular grid polygons: $S(P) \leq C(P) + E(P) - 6$.

Proof sketch

- Shown: $S(P) \leq C(P) + E(P) 4$
- Used shortest path lemma: $sp(c, s) \le E(P) 4$
- Proof assumed *c*, *s* in the first layer!
- Now: c in the 1-offset

2 steps gained!

イロト イ団ト イヨト イヨト
Competitivity (3)

Lemma (Exploration of uncritical polygons)

For uncritical triangular grid polygons: $S(P) \leq C(P) + E(P) - 6$.

Proof sketch

- Shown: $S(P) \leq C(P) + E(P) 4$
- Used shortest path lemma: $sp(c, s) \le E(P) 4$
- Proof assumed *c*, *s* in the first layer!
- Now: c in the 1-offset
- 2 steps gained!

イロト イ押ト イヨト イヨト

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive.

Proof

• Remove narrow passages (explored optimally) • \Rightarrow Split P into P₁

Tom Kamphans (TU Braunschweig)

Exploring Simple Grid Polygons

19.3.2008 20 / 24

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive.

Tom Kamphans (TU Braunschweig)

Exploring Simple Grid Polygons

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive.

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive.

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive.

- Remove narrow passages (explored optimally)
- \Rightarrow Split *P* into *P*_i
- Consider *P_i* separately

• Show $S(P_i) \le \frac{4}{3}C(P_i) - \frac{4}{3}$ by induction on the number of split cells in the first layer

• Ind. base: No split cell \Rightarrow uncritical polygon \Rightarrow

 $\begin{array}{rcl} S(P_i) & \leq & C(P_i) + E(P_i) - 6 & \text{by exploration lemma} \\ & \leq & C(P_i) + \frac{1}{3} \, C(P_i) + \frac{14}{3} - 6 & \text{by edges lemma} \\ & = & \frac{4}{3} \, C(P_i) - \frac{4}{3} \end{array}$

< A > < A > >

- Show $S(P_i) \le \frac{4}{3}C(P_i) \frac{4}{3}$ by induction on the number of split cells in the first layer
- Ind. base: No split cell \Rightarrow uncritical polygon \Rightarrow

$$\begin{array}{rcl} S(P_i) &\leq & C(P_i) + E(P_i) - 6 & \text{by exploration lemma} \\ &\leq & C(P_i) + \frac{1}{3} \, C(P_i) + \frac{14}{3} - 6 & \text{by edges lemma} \\ &= & \frac{4}{3} \, C(P_i) - \frac{4}{3} \end{array}$$

- Show S(P_i) ≤ ⁴/₃C(P_i) − ⁴/₃ by induction on the number of split cells in the first layer
- Ind. base: No split cell \Rightarrow uncritical polygon \Rightarrow
 - $\begin{array}{rcl} \mathcal{S}(\mathcal{P}_i) &\leq & \mathcal{C}(\mathcal{P}_i) + \mathcal{E}(\mathcal{P}_i) 6 & \text{by exploration lemma} \\ &\leq & \mathcal{C}(\mathcal{P}_i) + \frac{1}{3} \, \mathcal{C}(\mathcal{P}_i) + \frac{14}{3} 6 & \text{by edges lemma} \\ &= & \frac{4}{3} \, \mathcal{C}(\mathcal{P}_i) \frac{4}{3} \end{array}$

- Show $S(P_i) \le \frac{4}{3}C(P_i) \frac{4}{3}$ by induction on the number of split cells in the first layer
- Ind. base: No split cell \Rightarrow uncritical polygon \Rightarrow

$$\begin{array}{rcl} \mathcal{S}(\mathcal{P}_i) &\leq & \mathcal{C}(\mathcal{P}_i) + \mathcal{E}(\mathcal{P}_i) - 6 & \text{by exploration lemma} \\ &\leq & \mathcal{C}(\mathcal{P}_i) + \frac{1}{3} \, \mathcal{C}(\mathcal{P}_i) + \frac{14}{3} - 6 & \text{by edges lemma} \\ &= & \frac{4}{3} \, \mathcal{C}(\mathcal{P}_i) - \frac{4}{3} \end{array}$$

- Show S(P_i) ≤ ⁴/₃C(P_i) − ⁴/₃ by induction on the number of split cells in the first layer
- Ind. base: No split cell \Rightarrow uncritical polygon \Rightarrow

$$\begin{array}{rcl} \mathcal{S}(\mathcal{P}_i) &\leq & \mathcal{C}(\mathcal{P}_i) + \mathcal{E}(\mathcal{P}_i) - 6 & \text{ by exploration lemma} \\ &\leq & \mathcal{C}(\mathcal{P}_i) + \frac{1}{3} \, \mathcal{C}(\mathcal{P}_i) + \frac{14}{3} - 6 & \text{ by edges lemma} \\ &= & \frac{4}{3} \, \mathcal{C}(\mathcal{P}_i) - \frac{4}{3} \end{array}$$

New component

• Explorer meets visited cell c'

• $R := \{c\}$

• R: shortest path from c to c'

- Split P_i into P', P"
- $C(P_i) = C(P') + C(P'') |R|$
- $S(P_i) = S(P') + S(P'') 2(|R| 1)$
- Apply induction hypothesis to S(P'), S(P'')

- New component
- R := {c}

- Explorer meets visited cell c'
- R: shortest path from c to c'

- Split P_i into P', P"
- $C(P_i) = C(P') + C(P'') |R|$
- $S(P_i) = S(P') + S(P'') 2(|R| 1)$
- Apply induction hypothesis to S(P'), S(P'')

- New component
- R := {c}

- Explorer meets visited cell c'
- *R*: shortest path from *c* to *c*⁴

- Split *P_i* into *P'*, *P''*
- $C(P_i) = C(P') + C(P'') |R|$
- $S(P_i) = S(P') + S(P'') 2(|R| 1)$
- Apply induction hypothesis to S(P'), S(P'')

- New component
- R := {c}
 - Split *P_i* into *P'*, *P''*
 - $C(P_i) = C(P') + C(P'') |R|$
 - $S(P_i) = S(P') + S(P'') 2(|R| 1)$
 - Apply induction hypothesis to S(P'), S(P'')

- Explorer meets visited cell c'
- R: shortest path from c to c'

Explorer meets visited cell c'

R: shortest path from c to c'

- New component
- *R* := {*c*}
 - Split P_i into P', P"
 - $C(P_i) = C(P') + C(P'') |R|$
 - $S(P_i) = S(P') + S(P'') 2(|R| 1)$
 - Apply induction hypothesis to S(P'), S(P'')

Explorer meets visited cell c'

R: shortest path from c to c'

- New component
- R := {c}
 - Split P_i into P', P"
 - $C(P_i) = C(P') + C(P'') |R|$
 - $S(P_i) = S(P') + S(P'') 2(|R| 1)$
 - Apply induction hypothesis to S(P'), S(P'')

19.3.2008 22 / 24

Explorer meets visited cell c'

R: shortest path from c to c'

- New component
- R := {c}
 - Split P_i into P', P"
 - $C(P_i) = C(P') + C(P'') |R|$
 - $S(P_i) = S(P') + S(P'') 2(|R| 1)$
 - Apply induction hypothesis to S(P'), S(P'')

19.3.2008 22 / 24

Explorer meets visited cell c'

• R: shortest path from c to c'

- New component
- R := {c}
 - Split P_i into P', P"
 - $C(P_i) = C(P') + C(P'') |R|$
 - $S(P_i) = S(P') + S(P'') 2(|R| 1)$
 - Apply induction hypothesis to S(P'), S(P'')

- Lower bound \triangle : $\frac{7}{6}$
- Lower bound $\bigcirc: \frac{14}{13}$
- Exploration strategy SmartDFS
- Upper bound \triangle : $S(P) \leq C(P) + E(P) 4$
- Upper bound \bigcirc : $S(P) \leq C(P) + \frac{1}{4}E(P) \frac{5}{2}$
- $\frac{4}{3}$ -competitive

• ToDo: Close the gap!

- Lower bound \triangle : $\frac{7}{6}$
- Lower bound $\bigcirc: \frac{14}{13}$
- Exploration strategy SmartDFS
- Upper bound \triangle : $S(P) \leq C(P) + E(P) 4$
- Upper bound \bigcirc : $S(P) \leq C(P) + \frac{1}{4}E(P) \frac{5}{2}$
- $\frac{4}{3}$ -competitive

• ToDo: Close the gap!

- 3 →

- Lower bound \triangle : $\frac{7}{6}$
- Lower bound $\bigcirc: \frac{14}{13}$
- Exploration strategy SmartDFS
- Upper bound \triangle : $S(P) \leq C(P) + E(P) 4$
- Upper bound \bigcirc : $S(P) \leq C(P) + \frac{1}{4}E(P) \frac{5}{2}$
- $\frac{4}{3}$ -competitive

• ToDo: Close the gap!

- Lower bound $\triangle: \frac{7}{6}$
- Lower bound $\bigcirc: \frac{14}{13}$
- Exploration strategy SmartDFS
- Upper bound \triangle : $S(P) \leq C(P) + E(P) 4$
- Upper bound \bigcirc : $S(P) \leq C(P) + \frac{1}{4}E(P) \frac{5}{2}$

• $\frac{4}{3}$ -competitive

• ToDo: Close the gap!

- Lower bound \triangle : $\frac{7}{6}$
- Lower bound $\bigcirc: \frac{14}{13}$
- Exploration strategy SmartDFS
- Upper bound \triangle : $S(P) \leq C(P) + E(P) 4$
- Upper bound \bigcirc : $S(P) \leq C(P) + \frac{1}{4}E(P) \frac{5}{2}$

• $\frac{4}{3}$ -competitive

• ToDo: Close the gap!

- Lower bound \triangle : $\frac{7}{6}$
- Lower bound $\bigcirc: \frac{14}{13}$
- Exploration strategy SmartDFS
- Upper bound \triangle : $S(P) \leq C(P) + E(P) 4$
- Upper bound \bigcirc : $S(P) \leq C(P) + \frac{1}{4}E(P) \frac{5}{2}$

• $\frac{4}{3}$ -competitive

• ToDo: Close the gap!

- Lower bound \triangle : $\frac{7}{6}$
- Lower bound $\bigcirc: \frac{14}{13}$
- Exploration strategy SmartDFS
- Upper bound \triangle : $S(P) \leq C(P) + E(P) 4$
- Upper bound \bigcirc : $S(P) \leq C(P) + \frac{1}{4}E(P) \frac{5}{2}$
- $\frac{4}{3}$ -competitive

• ToDo: Close the gap!

- Lower bound \triangle : $\frac{7}{6}$
- Lower bound $\bigcirc: \frac{14}{13}$
- Exploration strategy SmartDFS
- Upper bound \triangle : $S(P) \leq C(P) + E(P) 4$
- Upper bound \bigcirc : $S(P) \leq C(P) + \frac{1}{4}E(P) \frac{5}{2}$
- $\frac{4}{3}$ -competitive
- ToDo: Close the gap!

Thank you!

Tom Kamphans (TU Braunschweig)

Exploring Simple Grid Polygons

< ≣ ► ≣ ৩৭৫ 19.3.2008 24/24

・ロト ・日下 ・ ヨト ・