Exploring Simple Triangular and Hexagonal Grid Polygons Online

Daniel Herrmann ${ }^{1}$ Tom Kamphans ${ }^{2}$ Elmar Langetepe ${ }^{1}$

${ }^{1}$ University of Bonn, Computer Science I, Bonn, Germany.
${ }^{2}$ Braunschweig University of Technology, Computer Science, Algorithms Group, Braunschweig, Germany.
19.3.2008

Grid Environments

Environment

- Convenient for motion planning tasks: Subdivide env. by integer grid - E.g.: cell size \approx size of robot's tool
- Simple \Leftrightarrow No holes

Grid Environments

Environment

- Convenient for motion planning tasks: Subdivide env. by integer grid - E.a.: cell size \approx size of robot's tool - Simple \Leftrightarrow No holes

Grid Environments

Environment

- Convenient for motion planning tasks: Subdivide env. by integer grid
- E.g. \therefore cell size \approx size of robot's tool
- Simple \Leftrightarrow No holes

Grid Environments

Environment

- Convenient for motion planning tasks: Subdivide env. by integer grid
- E.g.: cell size \approx size of robot's tool
- Simple \Leftrightarrow No holes

Grid Environments

Environment

- Convenient for motion planning tasks:
Subdivide env. by integer grid
- E.g.: cell size \approx size of robot's tool
- Simple \Leftrightarrow No holes

Grid Environments

Environment

- Convenient for motion planning tasks:
Subdivide env. by integer grid
- E.g.: cell size \approx size of robot's tool
- Simple \Leftrightarrow No holes

Grid Environments

Environment

- Convenient for motion planning tasks:
Subdivide env. by integer grid
- E.g.: cell size \approx size of robot's tool
- Simple \Leftrightarrow No holes

Other Grid Types

- Usually: Square grids
- Other regular tilings: hexagonal / triangular grids
- Agent:
- No vision
- Sense adjacent cells
- Move to free, adjacent cell

Other Grid Types

- Usually: Square grids
- Other regular tilings: hexagonal / triangular grids
- Agent:
- No vision
- Sense adjacent cells
- Move to free, adjacent cell

Other Grid Types

- Usually: Square grids
- Other regular tilings: hexagonal / triangular grids
- Agent:

- Sense adjacent cells - Move to free, adjacent cell

Other Grid Types

- Usually: Square grids
- Other regular tilings: hexagonal / triangular grids
- Agent:
- No vision
- Sense adjacent cells
- Move to free, adjacent cell

Other Grid Types

- Usually: Square grids
- Other regular tilings: hexagonal / triangular grids
- Agent:
- No vision
- Sense adjacent cells
- Move to free, adjacent cell

Other Grid Types

- Usually: Square grids
- Other regular tilings: hexagonal / triangular grids
- Agent:
- No vision
- Sense adjacent cells
- Move to free, adjacent cell

Online exploration (or covering):

- Given: an unknown grid environment, P start cell, s, along the boundary
- Task: Find a tour that
- For example: lawn mowing, cleaning

Online exploration (or covering):

- Given: an unknown grid environment, P start cell, s, along the boundary
- Task: Find a tour that
- visits every cell of P at least once
- returns to the start point
- can be computed online
- is as short as possible
- For example: lawn mowing, cleaning

Online exploration (or covering):

- Given: an unknown grid environment, P start cell, s, along the boundary
- Task: Find a tour that
- visits every cell of P at least once
- returns to the start point
- can be computed online
- is as short as possible
- For example: lawn mowing, cleaning

Online exploration (or covering):

- Given: an unknown grid environment, P start cell, s, along the boundary
- Task: Find a tour that
- visits every cell of P at least once
- returns to the start point
- can be computed online
- is as short as possible
- For example: lawn mowing, cleaning

Online exploration (or covering):

- Given: an unknown grid environment, P start cell, s, along the boundary
- Task: Find a tour that
- visits every cell of P at least once
- returns to the start point
- can be computed online
- is as short as possible
- For example: lawn mowing, cleaning

Online exploration (or covering):

- Given: an unknown grid environment, P start cell, s, along the boundary
- Task: Find a tour that
- visits every cell of P at least once
- returns to the start point
- can be computed online
- is as short as possible
- For example: lawn mowing, cleaning

Previous Work (square grids)

Offline exploration (environment is known in advance)

- With holes: NP-hard [Itai, Papadimitriou, Szwarcfiter; 1982]
- Approx. [Ntafos; 1992] [Arkin, Fekete, Mitchell; 2000]

Previous Work (square grids)

Offline exploration (environment is known in advance)

- With holes: NP-hard [Itai, Papadimitriou, Szwarcfiter; 1982]
- Approx. [Ntafos; 1992] [Arkin, Fekete, Mitchell; 2000]

Online exploration

- With holes:
[Icking, Kamphans, Klein, Langetepe; 2000]: 2-competitive [Gabriely, Rimon; 2000]
- Without holes:
[Icking, Kamphans, Klein, Langetepe; 2005]: $\frac{4}{3}$-competitive

A Lower Bound

Problem:

Online exploration of simple hexagonal/ triangular grid polygons

Theorem
 No online exploration strategy achieves a competitive factor
 better than
 - $\frac{7}{6}$ in simple triangular grid polygon.
 - $\frac{14}{13}$ in simple hexagonal grid polygon.

Lower bound for polygons with holes: 2 [IKKL 2000]

A Lower Bound

Problem:

Online exploration of simple hexagonal/ triangular grid polygons

Theorem

No online exploration strategy achieves a competitive factor better than

- $\frac{7}{6}$ in simple triangular grid polygon.
- $\frac{14}{13}$ in simple hexagonal grid polygon.

Lower bound for polygons with holes: 2 [IKKL 2000]

Proof: Lower Bound (Triangular Grids)

South or East

Proof: Lower Bound (Triangular Grids)

East

Proof: Lower Bound (Triangular Grids)

East

Proof: Lower Bound (Triangular Grids)

2 Possibilities: South

Proof: Lower Bound (Triangular Grids)

2 Possibilities: South, East

Proof: Lower Bound (Triangular Grids)

Close polygon

Proof: Lower Bound (Triangular Grids)

Online vs. Optimal

Proof: Lower Bound (Triangular Grids)

Close polygon

Proof: Lower Bound (Triangular Grids)

Online vs. Optimal

Proof: Lower Bound (Triangular Grids)

2 Possibilities: South

Proof: Lower Bound (Triangular Grids)

2 Possibilities: South, East

Proof: Lower Bound (Triangular Grids)

Close polygon

Proof: Lower Bound (Triangular Grids)

Online vs. Optimal

Proof: Lower Bound (Triangular Grids)

Close polygon

Proof: Lower Bound (Triangular Grids)

Online vs. Optimal

Proof: Lower Bound (Triangular Grids)

Polygons of arbitrary size

Proof: Lower Bound (Hexagonal Grids)

Proof: Lower Bound (Hexagonal Grids)

Leave boundary

Proof: Lower Bound (Hexagonal Grids)

Follow boundary

Proof: Lower Bound (Hexagonal Grids)

Close block

Proof: Lower Bound (Hexagonal Grids)

Online vs. Optimal

Proof: Lower Bound (Hexagonal Grids)

Close block

Proof: Lower Bound (Hexagonal Grids)

Online vs. Optimal

Proof: Lower Bound (Hexagonal Grids)

Polygons of arbitrary size

SmartDFS: An exploration strategy (1)

- First idea: Apply depth-first search (DFS)
- Left-hand rule: keep boundary and visited cell on the left side.
- Visits each cell twice!

SmartDFS: An exploration strategy (1)

- First idea: Apply depth-first search (DFS)
- Left-hand rule: keep boundary and visited cell on the left side.
- Visits each cell twice!

SmartDFS: An exploration strategy (1)

- First idea: Apply depth-first search (DFS)
- Left-hand rule: keep boundary and visited cell on the left side.
- Visits each cell twice!

SmartDFS: An exploration strategy (2)

- DFS visits each cell twice
- More reasonable: Return directly to unvisited cell
- Improved DFS

Improvement 1
 Return directly to those cells that have unexplored neighbors.

- DFS visits each cell twice
- More reasonable: Return directly to unvisited cell
- Improved DFS

Improvement 1
 Return directly to those cells that have unexplored neighbors.

- DFS visits each cell twice
- More reasonable: Return directly to unvisited cell
- Improved DFS

Improvement 1
 Return directly to those cells that have unexplored neighbors.

SmartDFS: An exploration strategy (2)

- DFS visits each cell twice
- More reasonable: Return directly to unvisited cell
- Improved DFS

Improvement 1
 Return directly to those cells that have unexplored neighbors.

SmartDFS: An exploration strategy (2)

- DFS visits each cell twice
- More reasonable: Return directly to unvisited cell
- Improved DFS

Improvement 1

Return directly to those cells that have unexplored neighbors.

- DFS visits long corridor four times
- More reasonable:
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

improvement 2

Detect and handle split cells (i. e., prefer parts of P farther away from the start).

- DFS visits long corridor four times
- More reasonable:

- Long corridor is traversed only two times!
 - Split cells: Set of unvisited cells gets disconnected

improvement 2

Detect and handle split cells (i. e., prefer parts of P farther away from the start).

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with
the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

improvement 2

Detect and handle split cells (i. e., prefer parts of P farther away from the start)

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with
the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

improvement 2

Detect and handle split cells (i. e., prefer parts of P farther away from the start)

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement?

Detect and handle split cells (i. e., prefer parts of P farther away from the start)

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
> - Long corridor is traversed only two times!
> - Split cells: Set of unvisited cells gets disconnected

Improvement?

Detect and handle split cells (i. e., prefer parts of P farther away from the start).

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
> - Long corridor is traversed only two times!
> - Split cells: Set of unvisited cells gets disconnected

Improvement?

Detect and handle split cells (i. e., prefer parts of P farther away from the start)

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2

Detect and handle split cells (i. e., prefer parts of P farther away from the start)

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

SmartDFS: An exploration strategy (3)

- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2

Detect and handle split cells (i. e., prefer parts of P farther away from the start).

Layer and Offset

- First layer:= Boundary cells of P
- 1-offset:= P without first layer
- Analogously: Second /ayer
- 2-offset and so on
- $E(P)$: \#edges between free and blocked cells

Layer and Offset

- First layer := Boundary cells of P
- 1-offset
P without first layer
- Analogously: Second layer
- 2-offset and so on
- $E(P)$: \#edges between free and blocked cells

Lemma (Number of edges in offsets)

P^{\prime} is ℓ-offset of $P \Rightarrow E\left(P^{\prime}\right) \leq E(P)-2 k \ell$
$(k \in\{3,4,6\}$ for $\triangle, \square, 0)$.

Layer and Offset

- First layer := Boundary cells of P
- 1-offset:=
P without first layer
- Analogously: Second layer
- 2-offset and so on
- $E(P)$: \#edges between free and blocked cells

Lemma (Number of edges in offsets)
 P^{\prime} is ℓ-offset of $P \Rightarrow F\left(P^{\prime}\right) \leq F(P)-2 k l$
 $(k \in\{3,4,6\}$ for $\triangle, \square, \square)$.

Layer and Offset

- First layer := Boundary cells of P
- 1-offset:=
P without first layer
- Analogously: Second layer
- 2-offset and so on
- $E(P)$: \#edges between free and blocked cells

Layer and Offset

- First layer := Boundary cells of P
- 1-offset:=
P without first layer
- Analogously: Second layer
- 2-offset and so on
- $E(P)$: \#edges between free and blocked cells

Layer and Offset

- First layer := Boundary cells of P
- 1-offset:=
P without first layer
- Analogously: Second layer
- 2-offset and so on
- E(P): \#edges between free and blocked cells

Layer and Offset

- First layer := Boundary cells of P
- 1-offset:=
P without first layer
- Analogously: Second layer
- 2-offset and so on
- $E(P)$: \#edges between free and blocked cells

Layer and Offset

- First layer :=

Boundary cells of P

- 1-offset:=
P without first layer
- Analogously: Second layer
- 2-offset and so on
- $E(P)$: \#edges between free and blocked cells

Lemma (Number of edges in offsets)

P^{\prime} is ℓ-offset of $P \Rightarrow E\left(P^{\prime}\right) \leq E(P)-2 k \ell$

$$
(k \in\{3,4,6\} \text { for } \triangle, \square, \circ) \text {. }
$$

Shortest Paths Lengths

Lemma (Shortest Path)

Shortest path between two cells in P:

- $s p(s, t) \leq E(P)-3$
(triangular grids)
(hexagonal grids)

Shortest Paths Lengths

Lemma (Shortest Path)

Shortest path between two cells in P:

- $s p(s, t) \leq E(P)-3$
(triangular grids)
(hexagonal grids)

Proof idea.

- Worst case: $-s, t$ in the first layer

- Path length $\leq \frac{1}{2}$. \#cells in the first layer

- Charge cells in the first laver against $E(P)$

Shortest Paths Lengths

Lemma (Shortest Path)

Shortest path between two cells in P:

- $s p(s, t) \leq E(P)-3$
(triangular grids)
(hexagonal grids)

Proof idea.

- Worst case: $-s, t$ in the first layer

- Path length $\leq \frac{1}{2}$. \#cells in the first layer

- Charge cells in the first layer against $E(P)$

Shortest Paths Lengths

Lemma (Shortest Path)

Shortest path between two cells in P:

- $s p(s, t) \leq E(P)-3$
(triangular grids)
- $s p(s, t) \leq \frac{1}{4} E(P)-\frac{3}{2}$

Proof idea.

- Worst case: $-s, t$ in the first layer
- Path length $\leq \frac{1}{2}$. \#cells in the first layer
- Charge cells in the first layer against $E(P)$

Shortest Paths Lengths

Lemma (Shortest Path)

Shortest path between two cells in P:

- $s p(s, t) \leq E(P)-3$
(triangular grids)
- $s p(s, t) \leq \frac{1}{4} E(P)-\frac{3}{2}$

Proof idea.

- Worst case: $-s, t$ in the first layer
- Path length $\leq \frac{1}{2}$. \#cells in the first layer
- Charge cells in the first layer against $E(P)$

Upper for the Number of Steps

Theorem (Number of Steps)

$$
\begin{array}{cl}
S(P) \leq C(P)+E(P)-4 & \text { (Triangular grids) } \\
S(P) \leq C(P)+\frac{1}{4} E(P)-\frac{5}{2} & \text { (Hexagonal grids) }
\end{array}
$$

$(S(P)$: \#Steps from cell to cell, $C(P)$: \#Cells, $E(P)$: \#Boundary edges)
This bound is exactly achieved in corridors of width 1 .

Proof sketch for triangular grids

- $S(P)=\underbrace{C(P)}$

Cells, i.e., necessary steps additional cell visits

- Show: ex $(P) \leq E(P)-4$ (triang.)
- Induction on the number of split cells
- Induction base: No split cell
- Visit every cell in $C(P)-1$ steps

Return to s in $\leq E(P)-3$ steps (Shortest-path lemma)

Proof sketch for triangular grids

- $S(P)=$

$+$
$\underbrace{e x(P)}$
Cells, i.e., necessary steps additional cell visits
- Show: ex $(P) \leq E(P)-4$ (triang.)
- Induction on the number of split cells
- Induction base: No split cell

Visit every cell in $C(P)-1$ steps
Return to s in $\leq E(P)-3$ steps (Shortest-path lemma)

Proof sketch for triangular grids

- $S(P)=$

Cells, i.e., necessary steps additional cell visits

- Show: $e x(P) \leq E(P)-4$ (triang.)
- Induction on the number of split cells
- Induction base: No split cell

Visit every cell in $C(P)-1$ steps
Return to s in $\leq E(P)-3$ steps (Shortest-path lemma)

Proof sketch for triangular grids

- $S(P)=$

Cells, i.e., necessary steps additional cell visits

- Show: $e x(P) \leq E(P)-4$ (triang.)
- Induction on the number of split cells
- Induction base: No split cell

Visit every cell in $C(P)-1$ steps
Return to s in $\leq E(P)-3$ steps (Shortest-path lemma)

Proof sketch for triangular grids

- $S(P)=$

Cells, i.e., necessary steps additional cell visits

- Show: $e x(P) \leq E(P)-4$ (triang.)
- Induction on the number of split cells
- Induction base: No split cell
- Visit every cell in $C(P)-1$ steps

Return to s in $\leq E(P)-3$ steps (Shortest-path lemma)

Proof sketch for triangular grids

- $S(P)=$

Cells, i.e., necessary steps additional cell visits

- Show: $e x(P) \leq E(P)-4$ (triang.)
- Induction on the number of split cells
- Induction base: No split cell
- Visit every cell in $C(P)-1$ steps
- Return to s in $\leq E(P)$ - 3 steps (Shortest-path lemma)

Proof Sketch (2)

Induction step:

- Explore up to the first split cell, c
- Enlarge c to boundary (add layers)
- Split polygon in two parts: P_{1}, P_{2}
- Path outside Q do not change
- K_{2} unexplored part of P_{2}
- Path in $P_{2} \backslash K_{2}$ visits no cell twice
- Apply induction hypothesis to P_{1} and $K_{2} \cup\{c\}$
- Charge edges of P_{1}, K_{2}, Q to $E(P)$

Proof Sketch (2)

Split cell c

Induction step:

- Explore up to the first split cell, c
- Enlarge c to boundary (add layers)
- Split polygon in two parts: P_{1}, P_{2}
- Path outside Q do not change
- K2 unexplored part of P_{2}
- Path in $P_{2} \backslash K_{2}$ visits no cell twice
- Anply induction hynothesis to P_{1} and $K_{2} \cup\{c\}$
- Charge edges of P_{1}, K_{2}, Q to $E(P)$

Proof Sketch (2)

Split cell c Split polygon Q

Induction step:

- Explore up to the first split cell, c
- Enlarge c to boundary (add layers)
- Split polygon in two parts: P_{1}, P_{2}
- Path outside Q do not change
- K_{2} unexplored part of P_{2}
- Path in $P_{2} \backslash K_{2}$ visits no cell twice
- Apply induction hypothesis to P_{1} and $K_{2} \cup\{c\}$
- Charge edges of P_{1}, K_{2}, Q to $E(P)$

Proof Sketch (2)

Induction step:

- Explore up to the first split cell, c
- Enlarge c to boundary (add layers)
- Split polygon in two parts: P_{1}, P_{2}
- Path outside Q do not change
- K_{2} unexplored part of P_{2}
- Path in $P_{2} \backslash K_{2}$ visits no cell twice
- Apply induction hypothesis to P_{1} and $K_{2} \cup\{c\}$
- Charge edges of P_{1}, K_{2}, Q to $E(P)$

Proof Sketch (2)

Induction step:

- Explore up to the first split cell, c
- Enlarge c to boundary (add layers)
- Split polygon in two parts: P_{1}, P_{2}
- Path outside Q do not change
- K_{2} unexplored part of P_{2}
- Path in $P_{2} \backslash K_{2}$ visits no cell twice
- Apply induction hypothesis to P. and $K_{2} \cup\{c\}$
- Charge edges of P_{1}, K_{2}, Q to $E(P)$

Proof Sketch (2)

Induction step:

- Explore up to the first split cell, c
- Enlarge c to boundary (add layers)
- Split polygon in two parts: P_{1}, P_{2}
- Path outside Q do not change
- K_{2} unexplored part of P_{2}
- Path in $P_{2} \backslash K_{2}$ visits no cell twice
- Apply induction hypothesis to P_{1} and $K_{2} \cup\{c\}$
- Charge edges of P_{1}, K_{2}, Q to $E(P)$

Proof Sketch (2)

Induction step:

- Explore up to the first split cell, c
- Enlarge c to boundary (add layers)
- Split polygon in two parts: P_{1}, P_{2}
- Path outside Q do not change
- K_{2} unexplored part of P_{2}
- Path in $P_{2} \backslash K_{2}$ visits no cell twice
- Apply induction hypothesis to P_{1} and $K_{2} \cup\{c\}$
- Charge edges of P_{1}, K_{2}, Q to $E(P)$

Proof Sketch (2)

Induction step:

- Explore up to the first split cell, c
- Enlarge c to boundary (add layers)
- Split polygon in two parts: P_{1}, P_{2}
- Path outside Q do not change
- K_{2} unexplored part of P_{2}
- Path in $P_{2} \backslash K_{2}$ visits no cell twice
- Apply induction hypothesis to P_{1} and $K_{2} \cup\{c\}$
- Charge edges of P_{1}, K_{2}, Q to $E(P)$

Proof Sketch (2)

Induction step:

- Explore up to the first split cell, c
- Enlarge c to boundary (add layers)
- Split polygon in two parts: P_{1}, P_{2}
- Path outside Q do not change
- K_{2} unexplored part of P_{2}
- Path in $P_{2} \backslash K_{2}$ visits no cell twice
- Apply induction hypothesis to P_{1} and $K_{2} \cup\{c\}$
- Charge edges of P_{1}, K_{2}, Q to $E(P)$

Competitivity, hexagonal and triangular grids

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive (i. e., $S_{\text {SmartDFs }} \leq \frac{4}{3} S_{\text {Optimal }}$)

Definition
 Narrow passage: Corridors of width 1 or 2.

Definition
 Uncritical polygon: neither narrow passages nor split cells in the first layer.

Competitivity, hexagonal and triangular grids

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive (i. e., $S_{\text {SmartDFs }} \leq \frac{4}{3} S_{\text {Optimal }}$)

Definition

Narrow passage: Corridors of width 1 or 2.
\square
Uncritical polygon: neither narrow passages nor split cells in the first layer.

Competitivity, hexagonal and triangular grids

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive (i. e., $S_{\text {SmartDFs }} \leq \frac{4}{3} S_{\text {Optimal }}$)

Definition

Narrow passage: Corridors of width 1 or 2.

Definition

Uncritical polygon: neither narrow passages nor split cells in the first layer.

Competitivity in triangular grids

Lemma (Edges in uncritical triangular polygons)

For uncritical grid polygons: $E(P) \leq \frac{1}{3} C(P)+\frac{14}{3}$

Proof idea.

Competitivity in triangular grids

Lemma (Edges in uncritical triangular polygons)

For uncritical grid polygons: $E(P) \leq \frac{1}{3} C(P)+\frac{14}{3}$

Proof idea.

- Successively remove straight line of at least 3 cells (thus at most 1 edge), maintaining the property 'uncritical'
- Ends with 'diamond' polygon, $E(P)=\frac{1}{3} C(P)+\frac{14}{3}$
- Adding removed lines maintains $E(P) \leq \frac{1}{3} C(P)+\frac{14}{3}$ in every step

Competitivity in triangular grids

Lemma (Edges in uncritical triangular polygons)

For uncritical grid polygons: $E(P) \leq \frac{1}{3} C(P)+\frac{14}{3}$

Proof idea.

- Successively remove straight line of at least 3 cells (thus at most 1 edge), maintaining the property 'uncritical'
- Ends with 'diamond' polygon, $E(P)=\frac{1}{3} C(P)+\frac{14}{3}$
- Adding removed lines maintains $E(P) \leq \frac{1}{3} C(P)+\frac{14}{3}$ in every step

Competitivity in triangular grids

Lemma (Edges in uncritical triangular polygons)

For uncritical grid polygons: $E(P) \leq \frac{1}{3} C(P)+\frac{14}{3}$

Proof idea.

- Successively remove straight line of at least 3 cells (thus at most 1 edge), maintaining the property 'uncritical'
- Ends with 'diamond' polygon, $E(P)=\frac{1}{3} C(P)+\frac{14}{3}$
- Adding removed lines maintains $E(P) \leq \frac{1}{3} C(P)+\frac{14}{3}$ in every step

Competitivity (3)

Lemma (Exploration of uncritical polygons)

For uncritical triangular grid polygons: $S(P) \leq C(P)+E(P)-6$.

Proof sketch

- Shown: $S(P) \leq C(P)+E(P)$
- Used shortest path lemma: $s p(c, s) \leq E(P)-4$
- Proof assumed c, s in the first layer!
- Now: c in the 1-offset
- 2 steps gained!

Competitivity (3)

Lemma (Exploration of uncritical polygons)

For uncritical triangular grid polygons: $S(P) \leq C(P)+E(P)-6$.

Proof sketch

- Shown: $S(P) \leq C(P)+E(P)-4$
- Used shortest path lemma: $s p(c, s) \leq E(P)-4$
- Proof assumed c, s in the first layer!
- Now: c in the 1 -offset
- 2 steps gained!

Competitivity (3)

Lemma (Exploration of uncritical polygons)

For uncritical triangular grid polygons: $S(P) \leq C(P)+E(P)-6$.

Proof sketch

- Shown: $S(P) \leq C(P)+E(P)-4$
- Used shortest path lemma: $s p(c, s) \leq E(P)-4$
- Proof assumed c, s in the first layer! - Now: c in the 1 -offset - 2 steps gained!

Competitivity (3)

Lemma (Exploration of uncritical polygons)

For uncritical triangular grid polygons: $S(P) \leq C(P)+E(P)-6$.

Proof sketch

- Shown: $S(P) \leq C(P)+E(P)-4$
- Used shortest path lemma: $s p(c, s) \leq E(P)-4$
- Proof assumed c, s in the first layer!

- Now: c in the 1-offset

- 2 steps gained!

Competitivity (3)

Lemma (Exploration of uncritical polygons)

For uncritical triangular grid polygons: $S(P) \leq C(P)+E(P)-6$.

Proof sketch

- Shown: $S(P) \leq C(P)+E(P)-4$
- Used shortest path lemma: $s p(c, s) \leq E(P)-4$
- Proof assumed c, s in the first layer!
- Now: c in the 1-offset
- 2 steps gained!

Competitivity (3)

Lemma (Exploration of uncritical polygons)

For uncritical triangular grid polygons: $S(P) \leq C(P)+E(P)-6$.

Proof sketch

- Shown: $S(P) \leq C(P)+E(P)-4$
- Used shortest path lemma: $s p(c, s) \leq E(P)-4$
- Proof assumed c, s in the first layer!
- Now: c in the 1-offset
- 2 steps gained!

Competitivity Proof

Theorem (Competitivity) SmartDFS is $\frac{4}{3}$ competitive.

Competitivity Proof

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive.

Proof

- Remove narrow passages (explored optimally)
- \Rightarrow Split P into P_{i}
- Consider P. senaretely

Competitivity Proof

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive.

Proof

- Remove narrow passages (explored optimally)

```
0 = Split P into P
    - Consider Pi separately
```


Competitivity Proof

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive.

Proof

- Remove narrow passages (explored optimally)
- \Rightarrow Split P into P_{i}
- Consider P_{i} separately

Competitivity Proof

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive.

Proof

- Remove narrow passages (explored optimally)
- \Rightarrow Split P into P_{i}
- Consider P_{i} separately

Competitivity Proof: Induction

- Show $S\left(P_{i}\right) \leq \frac{4}{3} C\left(P_{i}\right)-\frac{4}{3}$ by induction on the number of split cells in the first layer - Ind. base: No split cell \Rightarrow uncritical polygon \Rightarrow
$S\left(P_{i}\right) \leq C\left(P_{i}\right)+E\left(P_{i}\right)-6$ by exploration lemma

Competitivity Proof: Induction

- Show $S\left(P_{i}\right) \leq \frac{4}{3} C\left(P_{i}\right)-\frac{4}{3}$ by induction on the number of split cells in the first layer
- Ind. base: No split cell \Rightarrow uncritical polygon \Rightarrow

Competitivity Proof: Induction

- Show $S\left(P_{i}\right) \leq \frac{4}{3} C\left(P_{i}\right)-\frac{4}{3}$
by induction on the number of split cells in the first layer
- Ind. base: No split cell \Rightarrow uncritical polygon \Rightarrow

$$
S\left(P_{i}\right) \leq C\left(P_{i}\right)+E\left(P_{i}\right)-6 \quad \text { by exploration lemma }
$$

by edges lemma

Competitivity Proof: Induction

- Show $S\left(P_{i}\right) \leq \frac{4}{3} C\left(P_{i}\right)-\frac{4}{3}$
by induction on the number of split cells in the first layer
- Ind. base: No split cell \Rightarrow uncritical polygon \Rightarrow

$$
\begin{aligned}
S\left(P_{i}\right) & \leq C\left(P_{i}\right)+E\left(P_{i}\right)-6 \quad \text { by exploration lemma } \\
& \leq C\left(P_{i}\right)+\frac{1}{3} C\left(P_{i}\right)+\frac{14}{3}-6 \text { by edges lemma } \\
& =\frac{4}{3} C\left(P_{i}\right)-\frac{4}{3}
\end{aligned}
$$

Competitivity Proof: Induction

- Show $S\left(P_{i}\right) \leq \frac{4}{3} C\left(P_{i}\right)-\frac{4}{3}$
by induction on the number of split cells in the first layer
- Ind. base: No split cell \Rightarrow uncritical polygon \Rightarrow

$$
\begin{aligned}
S\left(P_{i}\right) & \leq C\left(P_{i}\right)+E\left(P_{i}\right)-6 \quad \text { by exploration lemma } \\
& \leq C\left(P_{i}\right)+\frac{1}{3} C\left(P_{i}\right)+\frac{14}{3}-6 \quad \text { by edges lemma } \\
& =\frac{4}{3} C\left(P_{i}\right)-\frac{4}{3}
\end{aligned}
$$

Competitivity Proof: Induction step

- New component - Explorer meets visited cell c^{\prime}
- $R:=\{c\}$ - R: shortest path from c to c^{\prime}
- Split P_{i} into $P^{\prime}, P^{\prime \prime}$
- $C\left(P_{i}\right)=C\left(P^{\prime}\right)+C\left(F^{\prime \prime}\right)-|R|$
- $S\left(P_{i}\right)=S\left(P^{\prime}\right)+S\left(P^{\prime \prime}\right)-2(|R|-1)$
- Apply induction hypothesis to $S\left(P^{\prime}\right), S\left(P^{\prime \prime}\right)$

Competitivity Proof: Induction step

- New component
- $R:=\{c\}$
- Split P_{i} into $P^{\prime}, P^{\prime \prime}$
- $C\left(P_{i}\right)=C\left(P^{\prime}\right)+C\left(P^{\prime \prime}\right)-|R|$
- $S\left(P_{i}\right)=S\left(P^{\prime}\right)+S\left(P^{\prime \prime}\right)-2(|R|-1)$
- Apply induction hypothesis to $S\left(P^{\prime}\right), S\left(P^{\prime \prime}\right)$

Competitivity Proof: Induction step

- New component
- $R:=\{c\}$
- Explorer meets visited cell c^{\prime}
- R: shortest path from c to c'
- Split P_{i} into $P^{\prime}, P^{\prime \prime}$
- $C\left(P_{i}\right)=C\left(P^{\prime}\right)+C\left(P^{\prime \prime}\right)-|R|$
- $S\left(P_{i}\right)=S\left(P^{\prime}\right)+S\left(P^{\prime \prime}\right)-2(|R|-1)$
- Apply induction hypothesis to $S\left(P^{\prime}\right), S\left(P^{\prime \prime}\right)$

Competitivity Proof: Induction step

- New component
- $R:=\{c\}$
- Explorer meets visited cell c^{\prime}
- R: shortest path from c to c^{\prime}
- Split P_{i} into $P^{\prime}, P^{\prime \prime}$
- $C\left(P_{i}\right)=C\left(P^{\prime}\right)+C\left(P^{\prime \prime}\right)-|R|$
- $S\left(P_{i}\right)=S\left(P^{\prime}\right)+S\left(P^{\prime \prime}\right)-2(|R|-1)$
- Apply induction hypothesis to $S\left(P^{\prime}\right), S\left(P^{\prime \prime}\right)$

Competitivity Proof: Induction step

- New component
- $R:=\{c\}$

- Explorer meets visited cell c^{\prime}
- R: shortest path from c to c^{\prime}
- Split P_{i} into $P^{\prime}, P^{\prime \prime}$
- $C\left(P_{i}\right)=C\left(P^{\prime}\right)+C\left(P^{\prime \prime}\right)-|R|$
- $S\left(P_{i}\right)=S\left(P^{\prime}\right)+S\left(P^{\prime \prime}\right)-2(|R|-1)$
- Apply induction hypothesis to $S\left(P^{\prime}\right), S\left(P^{\prime \prime}\right)$

Competitivity Proof: Induction step

- New component
- $R:=\{c\}$

- Explorer meets visited cell c^{\prime}
- R: shortest path from c to c^{\prime}
- Split P_{i} into $P^{\prime}, P^{\prime \prime}$
- $C\left(P_{i}\right)=C\left(P^{\prime}\right)+C\left(P^{\prime \prime}\right)-|R|$
- $S\left(P_{i}\right)=S\left(P^{\prime}\right)+S\left(P^{\prime \prime}\right)-2(|R|-1)$
- Apply induction hypothesis to $S\left(P^{\prime}\right), S\left(P^{\prime \prime}\right)$

Competitivity Proof: Induction step

- New component
- $R:=\{c\}$

- Explorer meets visited cell c^{\prime}
- R: shortest path from c to c^{\prime}
- Split P_{i} into $P^{\prime}, P^{\prime \prime}$
- $C\left(P_{i}\right)=C\left(P^{\prime}\right)+C\left(P^{\prime \prime}\right)-|R|$
- $S\left(P_{i}\right)=S\left(P^{\prime}\right)+S\left(P^{\prime \prime}\right)-2(|R|-1)$
- Apply induction hypothesis to $S\left(P^{\prime}\right), S\left(P^{\prime \prime}\right)$

Competitivity Proof: Induction step

- New component
- $R:=\{c\}$

- Explorer meets visited cell c^{\prime}
- R: shortest path from c to c^{\prime}
- Split P_{i} into $P^{\prime}, P^{\prime \prime}$
- $C\left(P_{i}\right)=C\left(P^{\prime}\right)+C\left(P^{\prime \prime}\right)-|R|$
- $S\left(P_{i}\right)=S\left(P^{\prime}\right)+S\left(P^{\prime \prime}\right)-2(|R|-1)$
- Apply induction hypothesis to $S\left(P^{\prime}\right), S\left(P^{\prime \prime}\right)$

Summary

Problem: Online exploration of simple grid polygons

- Lower bound $\triangle: \frac{7}{6}$
- Lower bound $0: \frac{14}{13}$
- Exploration strategy SmartDFS

- ${ }_{3}^{4}$-competitive
- ToDo: Close the gap!

Summary

Problem: Online exploration of simple grid polygons

- Lower bound $\triangle: \frac{7}{6}$
- Lower bound : $\frac{14}{13}$
- Exploration strategy SmartDFS

- $\frac{4}{3}$-competitive
- ToDo: Close the gap!

Summary

Problem: Online exploration of simple grid polygons

- Lower bound $\triangle: \frac{7}{6}$
- Lower bound $\square: \frac{14}{13}$
- Exploration strategy SmartDFS

- $\frac{4}{3}$-competitive
- ToDo: Close the gap!

Summary

Problem: Online exploration of simple grid polygons

- Lower bound $\triangle: \frac{7}{6}$
- Lower bound $\square: \frac{14}{13}$
- Exploration strategy SmartDFS
- Upper bound $\triangle: S(P) \leq C(P)+E(P)-4$

- ${ }_{3}$-competitive
- ToDo: Close the gap!

Summary

Problem: Online exploration of simple grid polygons

- Lower bound $\triangle: \frac{7}{6}$
- Lower bound $\square: \frac{14}{13}$
- Exploration strategy SmartDFS
- Upper bound $\triangle: S(P) \leq C(P)+E(P)-4$
- Upper bound $\square: S(P) \leq C(P)+\frac{1}{4} E(P)-\frac{5}{2}$
- $\frac{4}{3}$-competitive
- ToDo: Close the gap!

Summary

Problem: Online exploration of simple grid polygons

- Lower bound $\triangle: \frac{7}{6}$
- Lower bound $\square: \frac{14}{13}$
- Exploration strategy SmartDFS
- Upper bound $\triangle: S(P) \leq C(P)+E(P)-4$
- Upper bound $\square S(P) \leq C(P)+\frac{1}{4} E(P)-\frac{5}{2}$
- ToDo: Close the gap!

Summary

Problem: Online exploration of simple grid polygons

- Lower bound $\triangle: \frac{7}{6}$
- Lower bound $\square: \frac{14}{13}$
- Exploration strategy SmartDFS
- Upper bound $\triangle: S(P) \leq C(P)+E(P)-4$
- Upper bound $\square S(P) \leq C(P)+\frac{1}{4} E(P)-\frac{5}{2}$
- $\frac{4}{3}$-competitive
- ToDo: Close the gap!

Summary

Problem: Online exploration of simple grid polygons

- Lower bound $\triangle: \frac{7}{6}$
- Lower bound $\square: \frac{14}{13}$
- Exploration strategy SmartDFS
- Upper bound $\triangle: S(P) \leq C(P)+E(P)-4$
- Upper bound $\square S(P) \leq C(P)+\frac{1}{4} E(P)-\frac{5}{2}$
- $\frac{4}{3}$-competitive
- ToDo: Close the gap!

Thank you!

