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Grid Environments

Environment

Convenient for motion
planning tasks:

Subdivide env. by
integer grid

E.g.: cell size ≈ size
of robot’s tool

Simple ⇔ No holes
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Other Grid Types
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Usually: Square grids

Other regular tilings: hexagonal / triangular grids

Agent:

— No vision

— Sense adjacent cells

— Move to free, adjacent cell
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The Task

Online exploration (or covering):

Given: an unknown grid environment, P

start cell, s, along the boundary
Task: Find a tour that

visits every cell of P at least once
returns to the start point
can be computed online
is as short as possible

For example: lawn mowing, cleaning
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Previous Work (square grids)

Offline exploration (environment is known in advance)
With holes: NP-hard [Itai, Papadimitriou, Szwarcfiter; 1982]

Approx. [Ntafos; 1992] [Arkin, Fekete, Mitchell; 2000]

Online exploration
With holes:
[Icking, Kamphans, Klein, Langetepe; 2000]: 2-competitive
[Gabriely, Rimon; 2000]

Without holes:
[Icking, Kamphans, Klein, Langetepe; 2005]: 4

3-competitive
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A Lower Bound

Problem:
Online exploration of simple hexagonal/ triangular grid polygons

Theorem
No online exploration strategy achieves a competitive factor
better than

7
6 in simple triangular grid polygon.
14
13 in simple hexagonal grid polygon.

Lower bound for polygons with holes: 2 [IKKL 2000]
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Proof: Lower Bound (Triangular Grids)
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Proof: Lower Bound (Triangular Grids)
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Proof: Lower Bound (Triangular Grids)
Online vs. Optimal
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Proof: Lower Bound (Triangular Grids)
Polygons of arbitrary size
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Proof: Lower Bound (Hexagonal Grids)
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Proof: Lower Bound (Hexagonal Grids)
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Proof: Lower Bound (Hexagonal Grids)
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Proof: Lower Bound (Hexagonal Grids)
Polygons of arbitrary size
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SmartDFS: An exploration strategy (1)

s

s
First idea: Apply depth-first
search (DFS)

Left-hand rule: keep boundary
and visited cell on the left side.

Visits each cell twice!
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SmartDFS: An exploration strategy (2)

s

DFS visits each cell twice

More reasonable: Return directly to unvisited cell

Improved DFS

Improvement 1
Return directly to those cells that have unexplored neighbors.
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SmartDFS: An exploration strategy (3)

s

Split cells

DFS visits long corridor four times
More reasonable: Visit right part immediately, continue with
the corridor, visit left part, return to s
Long corridor is traversed only two times!
Split cells: Set of unvisited cells gets disconnected

Improvement 2
Detect and handle split cells (i. e., prefer parts of P farther away
from the start).
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Layer and Offset

E(P)=44

First layer :=
Boundary cells of P

1-offset :=
P without first layer

Analogously: Second layer

2-offset and so on

E(P): #edges between free
and blocked cells

Lemma (Number of edges in offsets)
P ′ is `-offset of P ⇒ E(P ′) ≤ E(P)− 2k`

(k ∈ {3, 4, 6} for 4, 2, 7).
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Shortest Paths Lengths

Lemma (Shortest Path)
Shortest path between two cells in P:

sp(s, t) ≤ E(P)− 3 (triangular grids)

sp(s, t) ≤ 1
4E(P)− 3

2 (hexagonal grids)

Proof idea.
Worst case: – s, t in the first layer

– Path length ≤ 1
2 · #cells in the first layer

Charge cells in the first layer against E(P)
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Upper for the Number of Steps

Theorem (Number of Steps)

S(P) ≤ C(P) + E(P)− 4 (Triangular grids)

S(P) ≤ C(P) +
1
4

E(P)− 5
2

(Hexagonal grids)

(S(P): #Steps from cell to cell, C(P): #Cells, E(P): #Boundary edges)

This bound is exactly achieved in corridors of width 1.

Tom Kamphans (TU Braunschweig) Exploring Simple Grid Polygons 19.3.2008 14 / 24



Proof sketch for triangular grids

S(P) = C(P)︸ ︷︷ ︸
Cells, i.e., necessary steps

+ ex(P)︸ ︷︷ ︸
additional cell visits

Show: ex(P) ≤ E(P)− 4 (triang.)

Induction on the number of split cells

Induction base: No split cell

Visit every cell in C(P)− 1 steps

Return to s in ≤ E(P)− 3 steps (Shortest-path lemma)
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Proof Sketch (2)

s

c

Split cell c

Split polygon Q

P2

P1P1

P2

K1

K2

s

s’

Induction step:

Explore up to the first split cell, c

Enlarge c to boundary (add layers)

Split polygon in two parts: P1, P2

Path outside Q do not change

K2 unexplored part of P2

Path in P2\K2 visits no cell twice

Apply induction hypothesis to P1

and K2 ∪ {c}
Charge edges of P1, K2, Q to E(P)

2
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Competitivity, hexagonal and triangular grids

Theorem (Competitivity)
SmartDFS is 4

3 competitive (i. e., SSmartDFS ≤ 4
3 SOptimal)

Definition
Narrow passage: Corridors of width 1 or 2.

Definition
Uncritical polygon: neither narrow passages nor split cells in the
first layer.
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Competitivity in triangular grids

Lemma (Edges in uncritical triangular polygons)
For uncritical grid polygons: E(P) ≤ 1

3C(P) + 14
3

Proof idea.
Successively remove straight line of at least 3 cells (thus at
most 1 edge), maintaining the property ’uncritical’

Ends with ’diamond’ polygon, E(P) = 1
3C(P) + 14

3

Adding removed lines maintains E(P) ≤ 1
3C(P) + 14

3 in
every step
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Competitivity (3)

Lemma (Exploration of uncritical polygons)
For uncritical triangular grid polygons: S(P) ≤ C(P) + E(P)− 6.

Proof sketch
Shown: S(P) ≤ C(P) + E(P)− 4

Used shortest path lemma: sp(c, s) ≤ E(P)− 4

Proof assumed c, s in the first layer!

Now: c in the 1-offset

2 steps gained!
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Competitivity Proof

Theorem (Competitivity)
SmartDFS is 4

3 competitive.

Proof

P1 P4P3P2

Remove narrow passages (explored optimally)

⇒ Split P into Pi

Consider Pi separately
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Competitivity Proof: Induction

Show S(Pi) ≤ 4
3C(Pi)− 4

3
by induction on the number of split cells in the first layer

Ind. base: No split cell ⇒ uncritical polygon ⇒

S(Pi) ≤ C(Pi) + E(Pi)− 6 by exploration lemma

≤ C(Pi) +
1
3

C(Pi) +
14
3
− 6 by edges lemma

=
4
3

C(Pi)−
4
3
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Competitivity Proof: Induction step

c

c’

c
P ′′

P ′′

P ′P ′

New component

R := {c}
Explorer meets visited cell c′

R: shortest path from c to c′

Split Pi into P ′, P ′′

C(Pi) = C(P ′) + C(P ′′)− |R|
S(Pi) = S(P ′) + S(P ′′)− 2 (|R| − 1)

Apply induction hypothesis to S(P ′), S(P ′′) 2
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Summary

Problem: Online exploration of simple grid polygons

Lower bound 4: 7
6

Lower bound 7: 14
13

Exploration strategy SmartDFS

Upper bound 4: S(P) ≤ C(P) + E(P)− 4

Upper bound 7: S(P) ≤ C(P) + 1
4E(P)− 5

2
4
3 -competitive

ToDo: Close the gap!
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Thank you!
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