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Introduction

Grid Environments

For some tasks in robot motion planning, it is convenient to subdivide

the given environment by an integer grid; for example, if the agent

has only limited vision or has to visit every part of the environment.

Imagine, we want to mow a grass like this, then we can subdivide the

environment according to the size of the tool.

We call a grid environment simple polygons if there are no obstacles

inside the polygon.



Other Grid Types
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Usually: Square grids

Other regular tilings: hexagonal / triangular grids

Agent:

— No vision

— Sense adjacent cells

— Move to free, adjacent cell
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Introduction

Other Grid Types

Usually, square-shaped cells are used for such a subdivision. A

natural extension is to ask for other regular tilings. There are only two

other regular tilings of the plane: triangular and hexagonal grids.

We assume that the agent has no vision, but it can sense the cells

that are adjacent to its current position, and that the agent can move

from one cell to an adjacent cell that is part of the polygon.



The Task

Online exploration (or covering):

Given: an unknown grid environment, P

start cell, s, along the boundary

Task: Find a tour that

visits every cell of P at least once

returns to the start point

can be computed online

is as short as possible

For example: lawn mowing, cleaning
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Introduction

The Task

The agent’s task is to explore the whole environment. More precisely,

given an unknown grid environment and a start point, we want to find

a tour that visits every cell at least once and returns to start point.

The environment is unknown to the robot, so we want to compute our

path online. We use the length of the robot’s path as quality measure,

so we want to keep the path as short as possible.



Previous Work (square grids)

Offline exploration (environment is known in advance)

With holes: NP-hard [Itai, Papadimitriou, Szwarcfiter; 1982]

Approx. [Ntafos; 1992] [Arkin, Fekete, Mitchell; 2000]

Online exploration

With holes:

[Icking, Kamphans, Klein, Langetepe; 2000]: 2-competitive
[Gabriely, Rimon; 2000]

Without holes:

[Icking, Kamphans, Klein, Langetepe; 2005]: 43 -competitive
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Introduction

Previous Work (square grids)

There are some previous results for square grids: It is known, that the

offline case where the environment is known to the robot is NP-hard

for polygons with holes and there are are some approximations.

Further, there are some online strategies, both for environments with

holes and environments without holes.



A Lower Bound

Problem:

Online exploration of simple hexagonal/ triangular grid polygons

Theorem

No online exploration strategy achieves a competitive factor better than

7
6 in simple triangular grid polygon.

14
13 in simple hexagonal grid polygon.

Lower bound for polygons with holes: 2 [IKKL 2000]
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Lower Bound

A Lower Bound

So, in the following we consider the online exploration problem for

simple grid polygons on triangular and hexagonal grids..

Our first result is a lower bound on the competitive factor for our

problem: We show that no online exploration strategy can achieve a

factor better than 7/6 in triangular polygons and 14/13 in hexagonal

grid polygons.



Proof: Lower Bound (Triangular Grids)
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Proof: Lower Bound (Triangular Grids)

To show the lower bound for triangular grids, let the agent start in a cell like

this: it has the choice to move to the east or to the south.

Whatever the robot does, we force the robot to move east in the next step.

For the third step, the robot has two possibilities: it may walk to the south, or

it may walk east. In the first case, we close the polygon like this. Now,

whatever the robot does, it needs at least 12 steps, while the optimal solution

needs only 10 steps. In the second case, we close the polygon like this, and

get a l.b. of 26
24
.

On this side, we use the same blocks, just turned by 60 degree; thus, we get

the same lower bounds.

These blocks have limited size. To get a general lower bound, we have to

construct polygons of arbitrary size. We can do this by repeating this

construction: As soon as the robot leaves one block, it enters the start cell of

the next block and the ’game’ starts again. Unfortunately, both the online and

the offline strategy need two more steps for the transition between the blocks,

so we get a lower bound that goes to 7
6
.



Proof: Lower Bound (Hexagonal Grids)
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Lower Bound

Proof: Lower Bound (Hexagonal Grids)

The construction for hexagonal grids is much simpler: we let the robot start in

cell like this. Now, it can either leave the boundary or follow the boundary. In

the first case, we close the block like this and get a lower bound of 7
6
. In the

other case, we use this block and get 13
12
.

Again, we generate polygons of arbitrary size by repeating the construction

using these transition cells. Altogether, we get a lower bound that goes to 14
13
.



SmartDFS: An exploration strategy (1)

s

s
First idea: Apply depth-first search

(DFS)

Left-hand rule: keep boundary and

visited cell on the left side.

Visits each cell twice!
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An Exploration Strategy

SmartDFS: An exploration strategy (1)

Now, how can we explore such a polygon?

A first idea for the exploration is, to use a simple depth-first search.

We use the left-hand rule; that is, we always keep the polygon’s

boundary and the visited cells on the left side of the robot. Of course,

DFS visits each cell twice.



SmartDFS: An exploration strategy (2)

s

DFS visits each cell twice

More reasonable: Return directly to unvisited cell

Improved DFS

Improvement 1

Return directly to those cells that have unexplored neighbors.
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SmartDFS: An exploration strategy (2)

Visiting each cell twice is not very efficient, we can do better. In this

example, DFS visits each cell in the long corridor twice. A more

clever strategy is to omit the second visit of the long corridor and walk

directly to the unexplored cell ⊗ so we get a path like this.

So the first improvement to DFS is to return directly to those cells that

have unexplored neighbors.



SmartDFS: An exploration strategy (3)

s

Split cells

DFS visits long corridor four times

More reasonable: Visit right part immediately, continue with the

corridor, visit left part, return to s

Long corridor is traversed only two times!

Split cells: Set of unvisited cells gets disconnected

Improvement 2

Detect and handle split cells (i. e., prefer parts of P farther away from

the start).
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An Exploration Strategy

SmartDFS: An exploration strategy (3)

But we still can do better. In this case, even the improved version of

DFS visits the long corridor in the middle four times.

An even more smarter strategy explores the polygon up to this cell.

Now, we do not follow the left-hand rule, but we explore the right part

first. Then, we continue with the corridor, visit the left part and return

to the start. Now, we visit the corridor in the middle only two times!

The cells on which we diverge from the left-hand rule have the

property, that the unvisited cells split in two components after the cell

is visited; we call cells like this split cells.

Thus, the second improvement to DFS is to detect split and handle

split cells. Basically, we want to deal with components that are farther

away from the start first.



Layer and Offset

E(P)=44

First layer :=
Boundary cells of P

1-offset :=
P without first layer

Analogously: Second layer

2-offset and so on

E(P): #edges between free
and blocked cells

Lemma (Number of edges in offsets)

P ′ is !-offset of P ⇒ E(P ′) ≤ E(P)− 2k!
(k ∈ {3,4,6} for ), !, ").
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Analysis

Layer and Offset

We need some definitions and lemmas for the analysis of our

strategy. First, we call the boundary cells of P the first layer of P. P

without its first layer is called the 1-offset of P. The boundary cells of

the 1-offset are called the second layer of P, P without its first and

second layer is called the 2-offset and so on.

We define E to be the number of edges between a free cell and a

blocked cell. In this polygon, for example, we count the edges shown

in red.

An important fact is that we have an upper bound on the number of

edges in an offset that is substantially smaller than the number of

edges in P.



Shortest Paths Lengths

Lemma (Shortest Path)

Shortest path between two cells in P:

sp(s, t) ≤ E(P)− 3 (triangular grids)

sp(s, t) ≤ 1
4E(P)− 3

2 (hexagonal grids)

Proof idea.

Worst case: – s, t in the first layer

– Path length ≤ 1
2 · #cells in the first layer

Charge cells in the first layer against E(P)
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Analysis

Shortest Paths Lengths

Another important lemma gives us an upper bound on the length of a

shortest path inside a grid polygon, in terms of the number of edges.

The idea to show this is to assume the worst case; that is, both cells

are located in the first layer of P and have maximal distance, that is

half the number of cells in the first layer. Now, we just have to charge

the boundary cells against the number of edges.



Upper for the Number of Steps

Theorem (Number of Steps)

S(P) ≤ C(P) + E(P)− 4 (Triangular grids)

S(P) ≤ C(P) +
1

4
E(P)− 5

2
(Hexagonal grids)

(S(P): #Steps from cell to cell, C(P): #Cells, E(P): #Boundary edges)

This bound is exactly achieved in corridors of width 1.
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Upper for the Number of Steps

Now, we are able to give a first performance result for our exploration

strategy: The number of steps from cell to cell is bound by THIS

inequation, which depends on the number of cells and the number of

edges. And this bound is tight, because it is exactly achieved in

polygons of width 1.



Proof sketch for triangular grids

S(P) = C(P)︸ ︷︷ ︸
Cells, i.e., necessary steps

+ ex(P)︸ ︷︷ ︸
additional cell visits

Show: ex(P) ≤ E(P)− 4 (triang.)

Induction on the number of split cells

Induction base: No split cell

Visit every cell in C(P)− 1 steps

Return to s in ≤ E(P)− 3 steps (Shortest-path lemma)
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Proof sketch for triangular grids

The idea to show this theorem is to split the number of steps into the

number of cells (the necessary steps) and the additional cell visits.

Then, we show an upper bound on the number of additional cell visits

by an induction on the number of split cells.

In the induction base we have no split cell, so we need C − 1 steps to

explore the whole polygon. The length of the path back to the start is

bound by our shortest-path lemma; thus, this equation holds.



Proof Sketch (2)

s

c

Split cell c

Split polygon Q

P2

P1P1

P2

K1

K2

s

s’

Induction step:

Explore up to the first split cell, c

Enlarge c to boundary (add layers)

Split polygon in two parts: P1, P2

Path outside Q do not change

K2 unexplored part of P2

Path in P2\K2 visits no cell twice

Apply induction hypothesis to P1 and

K2 ∪ {c}
Charge edges of P1, K2, Q to E(P)

!
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Analysis

Proof Sketch (2)

For the induction step we proceed as follows: We explore our polygon

up to the first split cell. Then we basically add some layers to c until

we meet the boundary, defining a split polygon, Q. Then, we split our

polygon in two parts doubling some of the cells in Q. The choice of

Q ensures that the path outside Q do not change and that K1 and K2

are the unexplored parts of P1 and P2, respectively. Because c is the

first split cell, the path in P2 without K2 visits no cell twice. And so we

can simply apply the induction hypothesis to P1 and K2 ∪ {c} and get
our result.



Competitivity, hexagonal and triangular grids

Theorem (Competitivity)

SmartDFS is 4
3 competitive (i. e., SSmartDFS ≤ 4

3 SOptimal)

Definition

Narrow passage: Corridors of width 1 or 2.

Definition

Uncritical polygon: neither narrow passages nor split cells in the first

layer.
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Competitivity, hexagonal and triangular grids

Using the upper bound on the number of steps, we can show a

second performance result: our exploration strategy is competitive

with a factor of 4
3
in both types of grids. This means that the path

generated by our strategy is never longer than 4
3
times the optimal

solution.

In the following, corridors of width 1 or 2 play an important rule, so we

refer to them as narrow passages. More precisely, a cell belongs to a

narrow passage, if we can remove this cell without changing the layer

number of any other cell.

We call polygons, that have neither narrow passages nor split in the

first layer uncritical polygons.



Competitivity in triangular grids

Lemma (Edges in uncritical triangular polygons)

For uncritical grid polygons: E(P) ≤ 1
3C(P) + 14

3

Proof idea.

Successively remove straight line of at least 3 cells (thus at most 1

edge), maintaining the property ’uncritical’

Ends with ’diamond’ polygon, E(P) = 1
3C(P) + 14

3

Adding removed lines maintains E(P) ≤ 1
3C(P) + 14

3 in every step
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Competitivity in triangular grids

I will sketch the proof for this for triangular polygons. For the special

class of uncritical polygons, we can proof two lemmas. The first is an

upper bound on number of edges in such a polygon with respect to

the number of cells.

The proof idea is to successively remove a straight line of at least

three cells, keeping the property that the polygon is uncritical. This

decomposition ends with a diamond shaped block of cells that fulfills

the equation. Now, if we reverse our decomposition process, we add

at most 1 edge and at least 3 cells in every step; thus, this inequation

is fulfilled in every step.



Competitivity (3)

Lemma (Exploration of uncritical polygons)

For uncritical triangular grid polygons: S(P) ≤ C(P) + E(P)− 6.

Proof sketch

Shown: S(P) ≤ C(P) + E(P)− 4

Used shortest path lemma: sp(c, s) ≤ E(P)− 4

Proof assumed c, s in the first layer!

Now: c in the 1-offset

2 steps gained!
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Competitivity (3)

Second, we can show that we can explore uncritical polygons better

than general simple polygons.

We already showed this upper bound for arbitrary simple polygons. In

the induction base, we used the shortest path lemma, but to proof this

lemma, we assumed that both cells are in the first layer of P.

Now, we return from a cell in the 1-offset of P to s, and so we gain

two steps.



Competitivity Proof

Theorem (Competitivity)

SmartDFS is 4
3 competitive.

Proof

P1 P4P3P2

Remove narrow passages (explored optimally)

⇒ Split P into Pi

Consider Pi separately
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Analysis

Competitivity Proof

With these two lemmas, we can show our theorem. First, we remove

all narrow passages, because they are explored optimally.

Thus, we split P into a sequence of polygons Pi , which can be

considered separately without changing the competitive factor.



Competitivity Proof: Induction

Show S(Pi) ≤ 4
3C(Pi)− 4

3

by induction on the number of split cells in the first layer

Ind. base: No split cell⇒ uncritical polygon⇒

S(Pi) ≤ C(Pi) + E(Pi)− 6 by exploration lemma

≤ C(Pi) +
1

3
C(Pi) +

14

3
− 6 by edges lemma

=
4

3
C(Pi)−

4

3
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Competitivity Proof: Induction

Now, we show this inequation by an induction on the number of split

cells in the first layer of Pi .

If there is no split cell, then our polygon is uncritical and our result

follows from the two lemmas on uncritical polygons.



Competitivity Proof: Induction step

c
c’

c
P ′′

P ′′

P ′P ′

New component

R := {c}
Explorer meets visited cell c′

R: shortest path from c to c′

Split Pi into P ′, P ′′

C(Pi) = C(P ′) + C(P ′′)− |R|
S(Pi) = S(P ′) + S(P ′′)− 2 (|R|− 1)

Apply induction hypothesis to S(P ′), S(P ′′) !
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2
0
0
8
-0
3
-2
5

Exploring Simple Grid Polygons

Analysis

Competitivity Proof: Induction step

If there is a split cell in the first layer, we have two cases. In the first

case, the new component was never visited before, and we define R

to be the split cell.

In the second case, we meet another cell, c′, and let R enclose the

shortest path from c to c′.
Now, we split our polygon into P ′ and P ′′. We have this equation for
the number of cells, because we count the cells in R twice, and also

this equation for the number of steps, because we count the steps

between c and c′ twice.

Applying the induction hypothesis to the number of steps in P ′ and P ′′

yields our result.



Summary

Problem: Online exploration of simple grid polygons

Lower bound ): 76
Lower bound ": 1413
Exploration strategy SmartDFS

Upper bound ): S(P) ≤ C(P) + E(P)− 4

Upper bound ": S(P) ≤ C(P) + 1
4E(P)− 5

2

4
3-competitive

ToDo: Close the gap!
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Thank you!
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