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Exploration and Search

Planning a path for an
autonomous vehicle

Exploration:
Move around, until everything
was ’seen’

Searching:
Move around, until target is
found

!!!

target
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Models

’Real world’ −→ ’Computable world’

Robot
Shape (point, circle, polygon), sensors (touch, vision),
motion restrictions, computational abilities
Errors in sensors and motion

Environment
Graph, polygon, obstacles (none/rect./polygonal/curved),
Grid environments

Costs
Measure: path length, number of turns/scans
Dimensions of the environment
Competitive ratio: |ONL|/|OPT|
Other ratios (search ratio)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 4 / 39



Models

’Real world’ −→ ’Computable world’

Robot
Shape (point, circle, polygon), sensors (touch, vision),
motion restrictions, computational abilities
Errors in sensors and motion

Environment
Graph, polygon, obstacles (none/rect./polygonal/curved),
Grid environments

Costs
Measure: path length, number of turns/scans
Dimensions of the environment
Competitive ratio: |ONL|/|OPT|
Other ratios (search ratio)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 4 / 39



Models

’Real world’ −→ ’Computable world’

Robot
Shape (point, circle, polygon), sensors (touch, vision),
motion restrictions, computational abilities
Errors in sensors and motion

Environment
Graph, polygon, obstacles (none/rect./polygonal/curved),
Grid environments

Costs
Measure: path length, number of turns/scans
Dimensions of the environment
Competitive ratio: |ONL|/|OPT|
Other ratios (search ratio)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 4 / 39



Models

’Real world’ −→ ’Computable world’

Robot
Shape (point, circle, polygon), sensors (touch, vision),
motion restrictions, computational abilities
Errors in sensors and motion

Environment
Graph, polygon, obstacles (none/rect./polygonal/curved),
Grid environments

Costs
Measure: path length, number of turns/scans
Dimensions of the environment
Competitive ratio: |ONL|/|OPT|
Other ratios (search ratio)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 4 / 39



Models

’Real world’ −→ ’Computable world’

Robot
Shape (point, circle, polygon), sensors (touch, vision),
motion restrictions, computational abilities
Errors in sensors and motion

Environment
Graph, polygon, obstacles (none/rect./polygonal/curved),
Grid environments

Costs
Measure: path length, number of turns/scans
Dimensions of the environment
Competitive ratio: |ONL|/|OPT|
Other ratios (search ratio)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 4 / 39



Models

’Real world’ −→ ’Computable world’

Robot
Shape (point, circle, polygon), sensors (touch, vision),
motion restrictions, computational abilities
Errors in sensors and motion

Environment
Graph, polygon, obstacles (none/rect./polygonal/curved),
Grid environments

Costs
Measure: path length, number of turns/scans
Dimensions of the environment
Competitive ratio: |ONL|/|OPT|
Other ratios (search ratio)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 4 / 39



Models

’Real world’ −→ ’Computable world’

Robot
Shape (point, circle, polygon), sensors (touch, vision),
motion restrictions, computational abilities
Errors in sensors and motion

Environment
Graph, polygon, obstacles (none/rect./polygonal/curved),
Grid environments

Costs
Measure: path length, number of turns/scans
Dimensions of the environment
Competitive ratio: |ONL|/|OPT|
Other ratios (search ratio)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 4 / 39



Models

’Real world’ −→ ’Computable world’

Robot
Shape (point, circle, polygon), sensors (touch, vision),
motion restrictions, computational abilities
Errors in sensors and motion

Environment
Graph, polygon, obstacles (none/rect./polygonal/curved),
Grid environments

Costs
Measure: path length, number of turns/scans
Dimensions of the environment
Competitive ratio: |ONL|/|OPT|
Other ratios (search ratio)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 4 / 39



Models

’Real world’ −→ ’Computable world’

Robot
Shape (point, circle, polygon), sensors (touch, vision),
motion restrictions, computational abilities
Errors in sensors and motion

Environment
Graph, polygon, obstacles (none/rect./polygonal/curved),
Grid environments

Costs
Measure: path length, number of turns/scans
Dimensions of the environment
Competitive ratio: |ONL|/|OPT|
Other ratios (search ratio)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 4 / 39



Models

’Real world’ −→ ’Computable world’

Robot
Shape (point, circle, polygon), sensors (touch, vision),
motion restrictions, computational abilities
Errors in sensors and motion

Environment
Graph, polygon, obstacles (none/rect./polygonal/curved),
Grid environments

Costs
Measure: path length, number of turns/scans
Dimensions of the environment
Competitive ratio: |ONL|/|OPT|
Other ratios (search ratio)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 4 / 39



Models

’Real world’ −→ ’Computable world’

Robot
Shape (point, circle, polygon), sensors (touch, vision),
motion restrictions, computational abilities
Errors in sensors and motion

Environment
Graph, polygon, obstacles (none/rect./polygonal/curved),
Grid environments

Costs
Measure: path length, number of turns/scans
Dimensions of the environment
Competitive ratio: |ONL|/|OPT|
Other ratios (search ratio)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 4 / 39



Models

’Real world’ −→ ’Computable world’

Robot
Shape (point, circle, polygon), sensors (touch, vision),
motion restrictions, computational abilities
Errors in sensors and motion

Environment
Graph, polygon, obstacles (none/rect./polygonal/curved),
Grid environments

Costs
Measure: path length, number of turns/scans
Dimensions of the environment
Competitive ratio: |ONL|/|OPT|
Other ratios (search ratio)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 4 / 39



Models

’Real world’ −→ ’Computable world’

Robot
Shape (point, circle, polygon), sensors (touch, vision),
motion restrictions, computational abilities
Errors in sensors and motion

Environment
Graph, polygon, obstacles (none/rect./polygonal/curved),
Grid environments

Costs
Measure: path length, number of turns/scans
Dimensions of the environment
Competitive ratio: |ONL|/|OPT|
Other ratios (search ratio)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 4 / 39



Models

’Real world’ −→ ’Computable world’

Robot
Shape (point, circle, polygon), sensors (touch, vision),
motion restrictions, computational abilities
Errors in sensors and motion

Environment
Graph, polygon, obstacles (none/rect./polygonal/curved),
Grid environments

Costs
Measure: path length, number of turns/scans
Dimensions of the environment
Competitive ratio: |ONL|/|OPT|
Other ratios (search ratio)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 4 / 39



Models

’Real world’ −→ ’Computable world’

Robot
Shape (point, circle, polygon), sensors (touch, vision),
motion restrictions, computational abilities
Errors in sensors and motion

Environment
Graph, polygon, obstacles (none/rect./polygonal/curved),
Grid environments

Costs
Measure: path length, number of turns/scans
Dimensions of the environment
Competitive ratio: |ONL|/|OPT|
Other ratios (search ratio)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 4 / 39



Models

’Real world’ −→ ’Computable world’

Robot
Shape (point, circle, polygon), sensors (touch, vision),
motion restrictions, computational abilities
Errors in sensors and motion

Environment
Graph, polygon, obstacles (none/rect./polygonal/curved),
Grid environments

Costs
Measure: path length, number of turns/scans
Dimensions of the environment
Competitive ratio: |ONL|/|OPT|
Other ratios (search ratio)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 4 / 39



Models

’Real world’ −→ ’Computable world’

Robot
Shape (point, circle, polygon), sensors (touch, vision),
motion restrictions, computational abilities
Errors in sensors and motion

Environment
Graph, polygon, obstacles (none/rect./polygonal/curved),
Grid environments

Costs
Measure: path length, number of turns/scans
Dimensions of the environment
Competitive ratio: |ONL|/|OPT|
Other ratios (search ratio)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 4 / 39



Models

’Real world’ −→ ’Computable world’

Robot
Shape (point, circle, polygon), sensors (touch, vision),
motion restrictions, computational abilities
Errors in sensors and motion

Environment
Graph, polygon, obstacles (none/rect./polygonal/curved),
Grid environments

Costs
Measure: path length, number of turns/scans
Dimensions of the environment
Competitive ratio: |ONL|/|OPT|
Other ratios (search ratio)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 4 / 39



Models

’Real world’ −→ ’Computable world’

Robot
Shape (point, circle, polygon), sensors (touch, vision),
motion restrictions, computational abilities
Errors in sensors and motion

Environment
Graph, polygon, obstacles (none/rect./polygonal/curved),
Grid environments

Costs
Measure: path length, number of turns/scans
Dimensions of the environment
Competitive ratio: |ONL|/|OPT|
Other ratios (search ratio)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 4 / 39



Models

’Real world’ −→ ’Computable world’

Robot
Shape (point, circle, polygon), sensors (touch, vision),
motion restrictions, computational abilities
Errors in sensors and motion

Environment
Graph, polygon, obstacles (none/rect./polygonal/curved),
Grid environments

Costs
Measure: path length, number of turns/scans
Dimensions of the environment
Competitive ratio: |ONL|/|OPT|
Other ratios (search ratio)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 4 / 39



Outline

1 Introduction

2 Exploring Grid Polygons
Introduction
Simple Grid Polygons
Grid Polygons with Holes

3 Search

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 5 / 39



The Problem

Robot has to explore an unknown environment, P
Find a tour in P that

visits every part of P at least once
returns to the robot’s start point
can be computed online
is as short as possible

For example: lawn mowing, cleaning
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Environment and Robot

?

?

?

?

Grid polygon:

Environment is
subdivided by an
integer grid

Simple ⇒ No holes

Robot

No vision

Can sense 4 adjacent
cells

Can enter adjacent,
free cell
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Previous Work

Offline (i. e., environment is known to the robot)
With holes:
NP-hard [Itai, Papadimitriou, Szwarcfiter; 1982]
53
40-approximation [Arkin, Fekete, Mitchell; 2000]

Without holes: complexity is unknown!
4
3 -approximation [Ntafos; 1992]
6
5 -approximation [Arkin, Fekete, Mitchell; 2000]

Online
[Butler; 1998], [Gabriely, Rimon; 2000]
[Bruckstein, Lindenbaum, Wagner; 2000]

Survey on covering [Choset; 2001]
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A Lower Bound

Theorem
No online exploration strategy achieves a competitive factor
better than

7
6

in simple grid polygons.

Proof.
Adversary strategy.
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Proof: Lower Bound

s

s

s

s

s

8/6

s s sss

12/1012/10

s

28/24
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Proof: Lower Bound

South or east
s

s

s
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8/6
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Proof: Lower Bound

Close polygon
s
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Proof: Lower Bound

Online vs. optimal
s

s

s

s
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s s sss
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Proof: Lower Bound

3 possibilities:
s

s

s

s

s

8/6

s s sss

12/1012/10

s

28/24
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Proof: Lower Bound

3 possibilities: south,
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Proof: Lower Bound
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Proof: Lower Bound

3 possibilities: south, east, north
s

s

s

s

s

8/6

s s s

ss

12/1012/10

s

28/24

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 10 / 39



Proof: Lower Bound

Close polygon
s

s

s

s

s

8/6

s s sss

12/1012/10

s

28/24

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 10 / 39



Proof: Lower Bound

Online vs. optimal
s

s

s

s

s

8/6

s s sss

12/1012/10

s

28/24

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 10 / 39



Proof: Lower Bound

Close polygon
s

s

s

s

s

8/6

s s sss

12/1012/10

s

28/24

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 10 / 39



Proof: Lower Bound

Online vs. optimal
s

s

s

s

s

8/6

s s sss

12/1012/10

s

28/24

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 10 / 39



Proof: Lower Bound

Polygons of arbitrary size
s

s

s

s

s

8/6

s s sss

12/1012/10

s

28/24
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SmartDFS: An exploration strategy (1)

s

First idea: Apply depth-first
search (DFS)

Left-hand rule: prefer step to the
left over a straight step over a
step to the right

Visits each cell twice!
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SmartDFS: An exploration strategy (2)

s

DFS visits each cell twice

More reasonable: Return directly to unvisited cell

Improved DFS

Improvement 1
Return directly to those cells that have unexplored neighbors.
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SmartDFS: An exploration strategy (3)

s

Split cells

DFS visits long corridor four times
More reasonable: Visit right part immediately, continue with
the corridor, visit left part, return to s
Long corridor is traversed only two times!
Split cells: Set of unvisited cells gets disconnected

Improvement 2
Detect and handle split cells (i. e., prefer parts of P farther away
from the start).
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Performance of SmartDFS

Theorem (Number of Steps)

S ≤ C +
1
2

E − 3 (tight!)

(S: #Steps from cell to cell, C: #cells, E : #boundary edges)

Theorem (Competitivity)
SmartDFS is 4

3 competitive (i. e., SSmartDFS ≤ 4
3 · SOptimal)
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Java Applet

http://www.geometrylab.de/Gridrobot/
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A Lower Bound

Theorem
No online exploration strategy achieves a factor better than

2

in grid polygons with holes.
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Proof: Lower Bound

fix large Q, observe strategy’s behaviour

s

R

Case 1: robot returns to s after Q < S < 2Q steps

→ close corridor with one unexplored cell at each end

Robot has walked at least 2R − 2 steps

Needs another 2R steps to explore the last two cells

Optimal 2R, Strat
Opt → 2 for Q →∞
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Proof: Lower Bound

s

R

R′

Case 2: robot prefers on side of the corridor

→ Add a T-crossing, both corridors turn back

Robot explored one corridor “up to s” → Close corridor

Robot walked ≈2R + 2R′, needs another ≈2R + 2R′

Optimal 2R + 2R′, Strat
Opt → 2 for Q →∞
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Proof: Lower Bound

s

R

R′

Case 2: robot prefers on side of the corridor

→ Add a T-crossing, both corridors turn back

Robot explored one corridor “up to s” → Close corridor

Robot walked ≈2R + 2R′, needs another ≈2R + 2R′

Optimal 2R + 2R′, Strat
Opt → 2 for Q →∞

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 18 / 39



Proof: Lower Bound

s

R

R′

Case 2: robot prefers on side of the corridor

→ Add a T-crossing, both corridors turn back

Robot explored one corridor “up to s” → Close corridor

Robot walked ≈2R + 2R′, needs another ≈2R + 2R′

Optimal 2R + 2R′, Strat
Opt → 2 for Q →∞

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 18 / 39



Proof: Lower Bound

s

R

R′

Case 2: robot prefers on side of the corridor

→ Add a T-crossing, both corridors turn back

Robot explored one corridor “up to s” → Close corridor

Robot walked ≈2R + 2R′, needs another ≈2R + 2R′

Optimal 2R + 2R′, Strat
Opt → 2 for Q →∞

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 18 / 39



Proof: Lower Bound

s

R

R′

Case 2: robot prefers on side of the corridor

→ Add a T-crossing, both corridors turn back

Robot explored one corridor “up to s” → Close corridor

Robot walked ≈2R + 2R′, needs another ≈2R + 2R′

Optimal 2R + 2R′, Strat
Opt → 2 for Q →∞

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 18 / 39



Proof: Lower Bound

s

R

R′

Case 2: robot prefers on side of the corridor

→ Add a T-crossing, both corridors turn back

Robot explored one corridor “up to s” → Close corridor

Robot walked ≈2R + 2R′, needs another ≈2R + 2R′

Optimal 2R + 2R′, Strat
Opt → 2 for Q →∞

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 18 / 39



Proof: Lower Bound

s

R

R′

Case 2: robot prefers on side of the corridor

→ Add a T-crossing, both corridors turn back

Robot explored one corridor “up to s” → Close corridor

Robot walked ≈2R + 2R′, needs another ≈2R + 2R′

Optimal 2R + 2R′, Strat
Opt → 2 for Q →∞

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 18 / 39



Proof: Lower Bound

s

R

R′

Case 2: robot prefers on side of the corridor

→ Add a T-crossing, both corridors turn back

Robot explored one corridor “up to s” → Close corridor

Robot walked ≈2R + 2R′, needs another ≈2R + 2R′

Optimal 2R + 2R′, Strat
Opt → 2 for Q →∞

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 18 / 39



Proof: Lower Bound

s

R

R′

Case 2: robot prefers on side of the corridor

→ Add a T-crossing, both corridors turn back

Robot explored one corridor “up to s” → Close corridor

Robot walked ≈2R + 2R′, needs another ≈2R + 2R′

Optimal 2R + 2R′, Strat
Opt → 2 for Q →∞

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 18 / 39



Strategy CellExplore

Forward mode:

Proceed using left-hand rule

Reserve cells right to (or on) the
walked path

If no forward step is possible:
enter backward mode

Backward mode:

Walk back on reserved cells

If unexplored cell appears:
enter forward mode
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Performance of CellExplore

Theorem (Number of Steps)
CellExplore needs at most

C +
1
2

E + 3H + W − 2

steps to explore a polygon. This bound is tight.

(C: #cells, E : #boundary edges, H: #holes, W : “sinuosity”)

W : distinguish between straight and winded polygons

W low W high
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Java Applet

http://www.geometrylab.de/Gridrobot/
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Outline

1 Introduction

2 Exploring Grid Polygons
Introduction
Simple Grid Polygons
Grid Polygons with Holes

3 Search
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Searching

Search for a goal in a given environment, E
Quality measure?
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Quality measure

Competitive ratio for a strategy, S:

C := sup
E

sup
p∈E

|S(s, p)|
|sp(s, p)|

Search ratio for a strategy S in E :

SR(S, E) := sup
p∈E

|S(s, p)|
|sp(s, p)|

(Koutsoupias et al.; 1996: offline search in graphs)
Optimal search ratio: SROPT(E) := inf

S
SR(S, E)

Approximation: S Search-competitive

Cs := sup
E

SR(S, E)

SROPT(E)
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Competitive ratio

Searching in a polygon

Searcher has vision

Adversary can force every
strategy to explore every
corridor

Optimal path is very short

⇒ every strategy is ’bad’
(i.e., not constant-competitive)

goalgoal
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Competitive ratio

Strat1: explore every corridor
completely

Strat2:
visit corridors up to d = 1
visit corridors up to d = 2
visit corridors up to d = 4 etc.

Strat2 seems to be ’better’:
visits points near to s earlier

Can we measure this quality?

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 26 / 39



Competitive ratio

Strat1: explore every corridor
completely

Strat2:
visit corridors up to d = 1
visit corridors up to d = 2
visit corridors up to d = 4 etc.

Strat2 seems to be ’better’:
visits points near to s earlier

Can we measure this quality?

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 26 / 39



Competitive ratio

Strat1: explore every corridor
completely

Strat2:
visit corridors up to d = 1
visit corridors up to d = 2
visit corridors up to d = 4 etc.

Strat2 seems to be ’better’:
visits points near to s earlier

Can we measure this quality?

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 26 / 39



Competitive ratio

Strat1: explore every corridor
completely

Strat2:
visit corridors up to d = 1
visit corridors up to d = 2
visit corridors up to d = 4 etc.

Strat2 seems to be ’better’:
visits points near to s earlier

Can we measure this quality?

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 26 / 39



Competitive ratio

Strat1: explore every corridor
completely

Strat2:
visit corridors up to d = 1
visit corridors up to d = 2
visit corridors up to d = 4 etc.

Strat2 seems to be ’better’:
visits points near to s earlier

Can we measure this quality?

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 26 / 39



Competitive ratio

Strat1: explore every corridor
completely

Strat2:
visit corridors up to d = 1
visit corridors up to d = 2
visit corridors up to d = 4 etc.

Strat2 seems to be ’better’:
visits points near to s earlier

Can we measure this quality?

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 26 / 39



Competitive ratio

Strat1: explore every corridor
completely

Strat2:
visit corridors up to d = 1
visit corridors up to d = 2
visit corridors up to d = 4 etc.

Strat2 seems to be ’better’:
visits points near to s earlier

Can we measure this quality?

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 26 / 39



Quality measure

Competitive ratio for a strategy, S:

C := sup
E

sup
p∈E

|S(s, p)|
|sp(s, p)|

Search ratio for a strategy S in E :

SR(S, E) := sup
p∈E

|S(s, p)|
|sp(s, p)|

(Koutsoupias et al.; 1996: offline search in graphs)
Optimal search ratio: SROPT(E) := inf

S
SR(S, E)

Approximation: S Search-competitive

Cs := sup
E

SR(S, E)

SROPT(E)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 27 / 39



Quality measure

Competitive ratio for a strategy, S:

C := sup
E

sup
p∈E

|S(s, p)|
|sp(s, p)|

Search ratio for a strategy S in E :

SR(S, E) := sup
p∈E

|S(s, p)|
|sp(s, p)|

(Koutsoupias et al.; 1996: offline search in graphs)
Optimal search ratio: SROPT(E) := inf

S
SR(S, E)

Approximation: S Search-competitive

Cs := sup
E

SR(S, E)

SROPT(E)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 27 / 39



Quality measure

Competitive ratio for a strategy, S:

C := sup
E

sup
p∈E

|S(s, p)|
|sp(s, p)|

Search ratio for a strategy S in E :

SR(S, E) := sup
p∈E

|S(s, p)|
|sp(s, p)|

(Koutsoupias et al.; 1996: offline search in graphs)
Optimal search ratio: SROPT(E) := inf

S
SR(S, E)

Approximation: S Search-competitive

Cs := sup
E

SR(S, E)

SROPT(E)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 27 / 39



Quality measure

Competitive ratio for a strategy, S:

C := sup
E

sup
p∈E

|S(s, p)|
|sp(s, p)|

Search ratio for a strategy S in E :

SR(S, E) := sup
p∈E

|S(s, p)|
|sp(s, p)|

(Koutsoupias et al.; 1996: offline search in graphs)
Optimal search ratio: SROPT(E) := inf

S
SR(S, E)

Approximation: S Search-competitive

Cs := sup
E

SR(S, E)

SROPT(E)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 27 / 39



Depth-Restrictable Exploration

Definition
An exploration algorithm, Expl, for E is depth restrictable :

Expl (d): explore E only up to depth d ≥ 1

Expl (d) is C-competitive, i.e., ∃C ≥ 1, β > 0 : ∀E :

|Expl (d)| ≤ C · |Explopt(β · d)| .

P(d)

d
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Approximation Framework

Approximation Strategy
Use Doubling paradigm : call Expl (2i), i = 1, 2, 3, . . ..

Theorem
Let E be an environment fulfilling ∀p ∈ E : |sp(s, p)| = |sp(p, s)|,
Expl be a C-competitive, depth-restrictable exploration algorithm
for E .

Searching with Expl (2i), i = 1, 2, 3, . . . yields a

4βC–search-competitive strategy (blind agent)

8βC–search-competitive strategy (agent has vision)

(β: enlargement factor for depth restriction)
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Searching in Simple Polygons

Shortest Watchman Route (Dror et al., 2003)
⇒ offline 8–search-competitive strategy√

2-competitive exploration for rectilinear polygons
(Deng et al., 1991)
⇒ 8

√
2–search-competitive online strategy for rectilinear

polygons

26.5-competitive exploration strategy PolyExplore
(Hoffmann et al., 1998)
⇒ 212–search-competitive online strategy for simple
polygons
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Searching in Polygons with Holes

No O(1)-competitive
exploration for polygons with
holes (Albers et al., 1999)

Optimal exploration path has
already bad search ratio

Enlarge environment

Optimal exploration path has
constant search ratio

Any online path still has
search ratio Ω(k)

2k

recursive subproblem

πopt

k

s

O(k)
w

s

t

s

k
O(k)

k

⇒ No search-competitive strategy
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General Lower Bound

Theorem
If for a given type of environments

there is no constant-competitive exploration strategy

the lower-bound scene can be enlarged

⇒ there is no search-competitive strategy.
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Relation Between Searching and Exploring

Close relation
∃ constant-competitive, depth-restrictable exploration
strategy
⇒ ∃ search-competitive strategy/
∃ constant-competitive exploration strategy,
but ∃ ’extendable’ lower bound
⇒

/
∃ search-competitive strategy

Open question
∃ search-competitive strategy

?⇐⇒ ∃ constant-competitive exploration strategy
(for environments fulfilling ∀p ∈ E : |sp(s, p)| = |sp(p, s)|)
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Summary

Onl. exploration of grid polygons

Simple polygons
Lower bound: 7

6
Expl. strategy SmartDFS
S ≤ C + 1

2E − 3
4
3 -competitive

Grid polygons with holes
Lower bound: 2
Expl. strategy CellExplore
S ≤ C + 1

2E + 3H + W − 2

Searching

Quality measure: search
ratio

Approximation framework

Applied to simple polygons

Lower bound for polygons
with holes

Relation between
exploration and searching

http://www.geometrylab.de/Gridrobot/
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Thank you!
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A Problem with SmartDFS

s s

Split cell? Split cell?no split cellSplit cell!

=⇒ No local criterion for detecting split cells!
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Analyzing technique

Successively remove start
cell and cells reserved in
the first step

Observe the balance of
cells, edges, and steps

Global arguments:
charge holes and curves
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Performance of CellExplore

Theorem (Number of Steps)
CellExplore needs at most

C +
1
2

E + 3H + W − 2

steps to explore a polygon. This bound is tight.

(C: #cells, E : #boundary edges, H: #holes, W : “sinuosity”)
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Quality measure

A search algorithm S is called C-competitive,
if ∃A, so that for every environment:

|S| ≤ C · |OPT|+ A

A search algorithm S is called C–search competitive,
if ∃A, so that for every environment E :

SR(S, E) ≤ C · SROPT(E) + A
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