Models and Algorithms for Online Exploration and

Search

Tom Kamphans?
Luniversity of Bonn, Computer Science |, Bonn, Germany.

April 04, 2006

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 1/39

Exploration and Search

@ Planning a path for an
autonomous vehicle

@ Exploration:
Move around, until everything
was 'seen’

@ Searching:
Move around, until target is found

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 3/39

2006-04-11

Models and Algos for Expl. and Search
Llntroduction

LExploration and Search

First, I'd like to give a short introduction to the topics of this talk.
Exploration and search are two problems that occur, for example, in
robotics.

In both problems, we want to find a path for a mobile robot.

In the exploration problem, we want the robot to move around, until
the whole environment is seen. In this example, the ROBOT (the red
dot) is located inside THIS polygon. From its current position, it sees
only THIS gray shaded region. Now, the robot has to move, for
example like this, to see the other parts of the environment.

In the search problem, we move around, until we see a TARGET

POINT, and then, we move directly towards the target.

'Real world” — "Computable world’

@ Robot
e Shape (point, circle, polygon), sensors (touch, vision), motion
restrictions, computational abilities
e Errors in sensors and motion
@ Environment
e Graph, polygon, obstacles (none/rect./polygonal/curved),
e Grid environments
@ Costs

e Measure: path length, number of turns/scans
e Dimensions of the environment

e Competitive ratio: |ONL|/|OPT|

e Other ratios (search ratio)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 4/39

2006-04-11

“Real world' — Computable world'

Models and Algos for Expl. and Search
Llntroduction

LModels

I guess, you all know what algorithms are good for, but maybe | should say some words
about models. Well, we always use models to map the real world into a computable
world. In our case, we have to model the robot itself: its shape and its sensors (is it
blind or can it see points in a farther distance). There may be some motion restrictions
(car-like robot); we have to account the robot’s computitional abilities (map?).

For practical applications, it is also important to consider that no robot is error free.
Then, there are several possiblities to model the robot’s environment. Very common is
to move the robot in a graph or in a polygon; perhaps in the presence of obstacles of
different complexities. But we may consider also special kinds of environments, for
example, environments with a grid structure like a chessboard.

Last, we want to be able to compare different solutions for our problem, so we have to
give a model for the costs. The first question is, what are the costs. Usually, we use
length of the path travelled by the robot is as a cost measure, but we may use other
measures like the number of turn or scans. We may give the cost depending on size of
the environment or we may compare it to the optimal solution (if we are dealing with
online algorithms). But we may use also other ratios: for example, the search ratio.

In the following, | will talk about the exploration of grid environments with a blind robot.
Further, we | will give some results on search ratios. In my thesis, | considered
searching with error-prone robots, but | will omit these results here.

The Problem

@ Robot has to explore an unknown environment, P
@ Find a tour in P that

@ visits every part of P at least once
@ returns to the robot’s start point

@ can be computed online

@ is as short as possible

@ For example: lawn mowing, cleaning

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 6/39

2006-04-11

Models and Algos for Expl. and Search =

LEproring Grid Polygons

LIntroduction
The Problem

We consider the problem of a robot that has to explore an
environment that is unknown to the robot.

More precisely, we want to find a path that visits every part of the
environment at least once and returns to the start point. The
environment is unknown to the robot, so we want to compute our path
online. We use the length of the robot’s path as quality measure;
thus, we want to keep the path as short as possible.

Environment and Robot

Grid polygon:

@ Environment is
subdivided by an integer
grid

@ Simple = No holes

Robot

@ No vision

@ Can sense 4 adjacent
cells

@ Can enter adjacent, free
cell

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 7139

2006-04-11

Models and Algos for Expl. and Search o

L : 3 .

Exploring Grid Polygons e
I—Introduction s torm

Environment and Robot < cansns e

o Can enter adjacent, free
cel

We deal with a special kind of environments we call grid polygons,

that is, we assume, that the environment is subdivided by an integer
rid.

ﬁ‘there are no holes in the environment, we call the polygon simple

polygon.

Our robot has no vision, but can sense the four cells that are adjacent

to the current position. The robot can move from one cell to an

adjacent cell that is part of the polygon.

Offline (i. e., environment is known to the robot)

@ With holes:
NP-hard [Itai, Papadimitriou, Szwarcfiter; 1982]
%-approximation [Arkin, Fekete, Mitchell; 2000]
@ Without holes: complexity is unknown!
%—approximation [Ntafos; 1992]
g—approximation [Arkin, Fekete, Mitchell; 2000]

@ [Butler; 1998], [Gabriely, Rimon; 2000]
[Bruckstein, Lindenbaum, Wagner; 2000]

@ Survey on covering [Choset; 2001]

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 8/39

2006-04-11

Models and Algos for Expl. and Search E—

LEproring Grid Polygons

LIntroduction
Previous Work

It is known, that the offline case where the environment is known to
the robot is NP-hard for polygons with holes, and there is an
approximation by Arkin et al.

For polygons without holes it is not known, whether this problem is
NP-complete. However, there are also some approximations.

For the online case, there are some works in a more practical context,
for example by Butler, Gabriely and Rimon, or Bruckstein and
colleages. Also, there is a nice survey on covering algorithms by
Howie Choset.

A Lower Bound

No online exploration strategy achieves a competitive factor better than

7

6

in simple grid polygons.

Adversary strategy.

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 9/39

2006-04-11

Models and Algos for Expl. and Search
LEproring Grid Polygons
LSimple Grid Polygons
LA Lower Bound

A Lower Bound

No online exploration stategy achieves a competiive factor better than
7
H
in simple rid polygons.

First, let me give you a lower bound on the exploration problem in
SIMPLE polygons: It can be shown that no online exploration strategy
can achieve a factor better than 7/6. To show this, we give an
adversary that that forces every online strategy to walk a path that is

at least 7/6 times longer than the optimal path.

Proof: Lower Bound

8/6 12/10 12/10

Models and Algos for Expl. and Search

2006-04-11

Models and Algos for Expl. and Search =

LEproring Grid Polygons E—F
L Simple Grid Polygons ﬁ%
LProof: Lower Bound 5 @ an A f
8/6 12/10 12/10 28124

We assume, that the robot starts in a corner of the polygon and moves one
step to the east. If the robot walks south, we can used a mirrored
construction.

For the second step, the robot has two possibilities: It may walk to the south,
or it may walk to the east.

In the first case, we close the polygon like this. Now, whatever the robot does,
it needs at least 8 steps, whereas the optimal solution needs only 6 steps
(the dotted lines show the optimal path).

In the second case, the robot has three possiblities: It can move S/E/N.

In the first two cases, we close the polygon like this, and get a ratio of %

In the more interesting case, the robot continues to follow the wall and we
close the polygon is this way. Now, the robot needs at least 28 steps, the
optimal strategy needs 24 steps (wall following yields best case).

These blocks have limited size. To get a general lower bound, we have to
construct polygons of arbitrary size. We can do this by repeating this
construction: As soon as the robot leaves one block, it enters the start cell of
the next block and the 'game’ starts again.

SmartDFS: An exploration strategy (1)

@ Firstidea: Apply depth-first search
(DFS)

@ Left-hand rule: prefer step to the left
over a straight step over a step to
the right

@ Visits each cell twice!

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 11/39

2006-04-11

Models and Algos for Expl. and Search e

I—Exploring Grid Polygons

o Firstdea: Apply depih-first search
(OFS)

I—Simple Grid Polygons

SmartDFS: An exploration strategy (1)

A first idea for the exploration is, to use a simple depth-first search.
We use the left-hand rule, that is, we always keep the polygons
boundary and the visited cells on the left side of the robot. Of course,
DFS visits each cell twice.

SmartDFS: An exploration strategy (2)

@ DFS visits each cell twice
@ More reasonable: Return directly to unvisited cell
@ Improved DFS

Improvement 1
Return directly to those cells that have unexplored neighbors.

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 12 /39

2006-04-11

Models and Algos for Expl. and Search L

LEproring Grid Polygons
L Simple Grid Polygons : S

LSmartDFS: An exploration strategy (2)

Visiting each cell twice is not very efficient, we can do better. In this
example, DFS visits each cell in the long corridor twice. Of course, it
is more reasonable to omit the second visit of the long corridor and
walk directly to the unexplored cell ® so we get a path like this.

So the first improvement to DFS is to return directly to those cells that
have unexplored neighbors.

SmartDFS: An exploration strategy (3)

Split cells

@ DFS visits long corridor four times

@ More reasonable: Visit right part immediately, continue with the
corridor, visit left part, return to s

@ Long corridor is traversed only two times!
@ Split cells: Set of unvisited cells gets disconnected

Improvement 2

Detect and handle split cells (i. e., prefer parts of P farther away from
the start).

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 13/39

2006-04-11

Models and Algos for Expl. and Search e

LEproring Grid Polygons e
LSimple Grid Polygons e
LSmartDFS: An exploration strategy (3)

parts of P farther away from

Del
the star)

But we still can do better. In this case, even the improved version of
DFS visits the long corridor in the middle four times.

It is more reasonable to explore the polygon up to this cell. Now, we
do not follow the left-hand rule, but explore the right part first. Then,
we continue with the corridor, visit the left part and return to the start.
Now, we visit the corridor in the middle only two times!

We call cells where we do not follow the LHR split cells, because they
have the property, that the unvisited cells split in two components
after the cell is visited, as you can see in this example. Now, we have
ONE block of unexplored cells, but as we enter this cell, we have one
block on the right and one block on the left side.

Thus, the second improvement to DFS is to detect split and handle
split cells. Basically, we want to deal with components that are farther
away from the start first.

Performance of SmartDFS

Theorem (Number of Steps)

S<C+ %E — 3 (tight!)

(S: #Steps from cell to cell, C: #cells, E: #boundary edges)

Theorem (Competitivity)

SmartDFS is 3 competitive (i. €., Ssmartors < 5 - Soptimal)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 14 /39

2006-04-11

Models and Algos for Expl. and Search
LEproring Grid Polygons

LSimple Grid Polygons
LPerformance of SmartDFS

We can give two performance results for our exploration strategy:
First, the number of steps from cell to cell —and, in turn, the length of
the exploration path—is bound by the number of cells plus half the
number of edges minus three. And this bound is tight!

Using this upper bound on the number of steps, we can further show
that SmartDFS is competitive with a factor of 4/3; that is, the path
generated by our strategy is never longer than % times the optimal
solution.

Java Applet

http://www.geometrylab.de/Gridrobot/

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 15/39

2006-04-11

Models and Algos for Expl. and Search
I—Exploring Grid Polygons
I—Simple Grid Polygons
Java Applet

Java Applet

hitp:/fwww. geometrylab, de/Gridrobot/

A Lower Bound

No online exploration strategy achieves a factor better than

2

in grid polygons with holes.

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 16 /39

2006-04-11

Models and Algos for Expl. and Search o

LEproring Grid Polygons

No online exploration strategy achieves a factor better than

LGrid Polygons with Holes 2

in grid polygons vih holes.

A Lower Bound

We can show that the exploration problem for polygons with holes is
harder than for polygons without holes; that is, we have a lower
bound of 2.

Proof: Lower Bound

@ fix large Q, observe strategy’s behaviour

S

e
< R >

@ Case 1: robot returns to s after Q < S < 2Q steps

@ — close corridor with one unexplored cell at each end
@ Robot has walked at least 2R — 2 steps

@ Needs another 2R steps to explore the last two cells
°

Optimal 2R, Sot—gatt —2forQ —

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 17 /39

2006-04-11

Proof: Lower Bound

o fixlarge Q, observe sirategy’s behaviour

Models and Algos for Expl. and Search
LEproring Grid Polygons
LGrid Polygons with Holes
Proof: Lower Bound

To show the lower bound, we fix a large number, Q, and observe the
behaviour of the strategy in a corridor. The strategy may visit the left
and the right parts of the corridor alternately, and in our first case, the
robot returns back to the start after walking at least Q steps and at
most 2Q steps. Now, we close the corridor with one unexplored cell
on each side. So far, the robot has walked 2R — 2 steps and needs
another 2R steps to visit the last cells. The optimal strategy needs
only 2R steps, and the ratio goes to 2 when Q goes to infinity. But
how do we proceed, if the robot does NOT return to s?

Proof: Lower Bound

@ Case 2: robot prefers on side of the corridor

@ — Add a T-crossing, both corridors turn back
@ Robot explored one corridor “up to s” — Close corridor
@ Robot walked ~2R + 2R’, needs another ~2R + 2R’

@ Optimal 2R + 2R/, Sot—f;‘tt . 2forQ — oo

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 18/39

2006-04-11

Models and Algos for Expl. and Search e

LEproring Grid Polygons
LGrid Polygons with Holes
Proof: Lower Bound

In this case, the robot prefers one side of the corridor. After 2Q steps,
we add a T-crossing to the corridor. Now, the robot may explore the
new corridors alternately. Both corridors turn back and lead parallel
along the first corridor.

Eventually, one of the corridors will be explored in the same length as
the first corridor. Now, we close the polygon with a loop connecting
THESE two corridors and one unexplored cell in the third corridor.
The robot has walked roughly 2R + 2R’—apart from the vertical
steps—and needs the same number to explore the last cell and go
back to the start. The optimal strategy needs only 2R + 2R’, so,
again, the ratio goes to 2 for Q to infinity.

Strategy CellExplore

Forward mode:
@ Proceed using left-hand rule

@ Reserve cells right to (or on) the
walked path

@ If no forward step is possible: enter
backward mode

Backward mode:
@ Walk back on reserved cells

@ If unexplored cell appears:
enter forward mode

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 19/39

2006-04-11

Models and Algos for Expl. and Search S

LEproring Grid Polygons
LGrid Polygons with Holes

 f unexplored cell appears:

Strategy CellExplore R

Our exploration strategy operates in two modes. In the forward mode
we move following the left-hand rule while reserving cells for the path
back. In this example, cells marked with a cross will be used for the
return path. We proceed, until there is no free, unreserved cell
adjacent to the robot’s position, and then we switch to the backward
mode.

In the backward mode, we simply walk back using the reserved cells.
If we encounter unexplored parts of the parts of the polygon, we
switch back to the forward mode, explore the new part recursively and
then continue with the path back.

Performance of CellExplore

Theorem (Number of Steps)
CellExplore needs at most

1
C+ B +3H +W -2

steps to explore a polygon. This bound is tight.

(C: #cells, E: #boundary edges, H: #holes, W: “sinuosity”)
W distinguish between straight and winded polygons

W low W high

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search

20/39

2006-04-11

Models and Algos for Expl. and Search
LEproring Grid Polygons

Performance of CellExplore

Theorem (Number of Steps)
CellExplore needs at most

LGrid Polygons with Holes

steps 1o explore a polygon. This bound is tight

Performance of CellExplore

We can show, that the number of steps needed by our strategy is
again bounded by the number of cells plus half the number of edges.
Additionally, we need at most three steps for every obstacle, and,
unfortunately, we need another parameter, W, which is used to

diffentiate between straight and winded polygons such as spirals with
many turns.

Java Applet

http://www.geometrylab.de/Gridrobot/

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 21/39

2006-04-11

Models and Algos for Expl. and Search
I—Exploring Grid Polygons
I—Grid Polygons with Holes
Java Applet

Java Applet

hitp:/fwww. geometrylab, de/Gridrobot/

@ Search for a goal in a given environment, £
@ Quality measure?

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 23/39

2006-04-11

Models and Algos for Expl. and Search —

LSearch

@ Search for a goalin a given environment, &
 Qualty measure?

LSearching

Now let’s consider the search for a goal. We want to find an
appropriate quality measure for search tasks.

Quality measure

@ Competitive ratio for a strategy, S:

S(s.p)]
C :=supsup ————
2P oo Isp(s. p)|

@ Search ratio for a strategy S in &:

15(s.p)|
SR(S,€&) :=sup ————~
(8.8) = SUP1os. p)]

(Koutsoupias et al.; 1996: offline search in graphs)
@ Optimal search ratio: SRop1(€) := ingR(S,S)

@ Approximation: S Search-competitive

SR(S, £)
Cs 1= SUp "2
s =P SRopt(€)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 24 /39

2006-04-11

Quality measure

@ Competiive rato fo a strateqy, 5

Models and Algos for Expl. and Search
LSearch

LQuality measure

Of course, we may use the competitive ratio as a quality measure. That is, we
compare the strategy to the shortest path and take the worst case ratio over
all points in an environment over all environments. But there is a problem
with this ratio.

We can use the search ratio to measure this qualtiy: We define the search
ratio of a given strategy in a given environment as the worst case ratio of the
strategy. Now, the optimal search ratio is the best achievable search ratio in
the given environment.

Unfortunately, for many settings, including polygons , it is not known how to
compute a path with optimal search ratio. Moreover, in an online setting we
may have no chance to compute an optimal search path. But we can try to
give an approximation. We call a strategy search competitive if it
approximates the optimal search path within a constant factor.

Observe the difference to the competitive ratio! We no longer compare only
to the shortest path to the goal, but to the best achievable worst case ratio.
Keep in mind, that the ratio in the definition of search-competitive is in fact a
ratio of ratios.

Competitive ratio

@ Searching in a polygon
@ Searcher has vision

@ Adversary can force every
strategy to explore every corridor

@ Optimal path is very short

@ = every strategy is 'bad’
(i.e., not constant-competitive)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 25/39

2006-04-11

Competitive ratio

goal

Models and Algos for Expl. and Search
LSearch

LCompetitive ratio

Let’'s consider, for example, searching in polygons. The searcher is
equipped with a vision system. For example, from THIS point, the
searcher can see the gray shaded region, and from THIS point, the
searcher sees THIS region.

We can force any strategy to explore every corridor. No matter in
which order the pockets are visited, we place the goal in the last
visited pocket. Because the optimal path is very short, every strategy
is considered bad in this framework.

Competitive ratio

Stratl: explore every corridor
completely

Strat2:

visit corridorsuptod =1
visit corridorsup tod =2
visit corridors up to d = 4 etc.
Strat2 seems to be 'better’:
visits points near to s earlier

Can we measure this quality?

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 26 /39

2006-04-11

Models and Algos for Expl. and Search —

LSearch

LCompetitive ratio

Now, let us observe two strategies: the first one successively visits
every corridor completely. The seconds strategy visits every corridor
up to a certain distance, and then doubles this distance.

Intuitively, the second strategy seems to be better: points near to the
start are visited early, so their ratios can’t be that bad if the goal is
near to the start.

On the other hand, we can 'afford’ to visit points farther away after
walking a longer path, because the optimal path to these points is
also long.

Now, the question is, if we can measure this quality.

Quality measure

@ Competitive ratio for a strategy, S:

S(s.p)]
C :=supsup ————
2P oo Isp(s. p)|

@ Search ratio for a strategy S in &:

15(s.p)|
SR(S,€&) :=sup ————~
(8.8) = SUP1os. p)]

(Koutsoupias et al.; 1996: offline search in graphs)
@ Optimal search ratio: SRop1(€) := ingR(S,S)

@ Approximation: S Search-competitive

SR(S, £)
Cs 1= SUp "2
s =P SRopt(€)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 27139

2006-04-11

Quality measure

@ Competiive rato fo a strateqy, 5

Models and Algos for Expl. and Search
LSearch

LQuality measure

Of course, we may use the competitive ratio as a quality measure. That is, we
compare the strategy to the shortest path and take the worst case ratio over
all points in an environment over all environments. But there is a problem
with this ratio.

We can use the search ratio to measure this qualtiy: We define the search
ratio of a given strategy in a given environment as the worst case ratio of the
strategy. Now, the optimal search ratio is the best achievable search ratio in
the given environment.

Unfortunately, for many settings, including polygons , it is not known how to
compute a path with optimal search ratio. Moreover, in an online setting we
may have no chance to compute an optimal search path. But we can try to
give an approximation. We call a strategy search competitive if it
approximates the optimal search path within a constant factor.

Observe the difference to the competitive ratio! We no longer compare only
to the shortest path to the goal, but to the best achievable worst case ratio.
Keep in mind, that the ratio in the definition of search-competitive is in fact a
ratio of ratios.

Depth-Restrictable Exploration

Definition

An exploration algorithm, Expl, for £ is depth restrictable :

@ Expl(d): explore £ only up to depthd > 1
@ Expl(d) is C-competitive, i.e., 3C > 1,3 > 0: V&:

|Expl(d)[< C - |EXp|opt(ﬂ -d)].

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search

28/39

2006-04-11

Models and Algos for Expl. and Search
LSearch

- Depth-Restrictable Exploration

The main idea to the design of search-competitive strategies is to use
exploration strategies, more precisely, depth-restricted exploration
strategies.

We call an exploration strategy depth-restrictable, if we can modify
the strategy to explore the enviroment only up to a given depth and
the modified strategy is still competitive. But we allow the
depth-restricted strategy to explore a little bit more than required; and
compare it to the optimal strategy in a larger environment. So we
have this factor 8 HERE.

The factor 8 makes it sometimes easier to find appropriate

exploration algorithms; for example in graphs.

Approximation Framework

Approximation Strategy

Use Doubling paradigm : call Expl (2'),i =1,2,3,....

Theorem
Let £ be an environment fulfilling Vp € £ : |sp(s, p)| = |sp(p, s)|, Expl
be a C-competitive, depth-restrictable exploration algorithm for £.
Searching with Expl (2'),i = 1,2,3,... yields a

@ 4pC—search-competitive strategy (blind agent)

@ 8pC—search-competitive strategy (agent has vision)

(6: enlargement factor for depth restriction)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 29/39

2006-04-11

Models and Algos for Expl. and Search e

LSearch

LApproximation Framework

Now, if we have found a depth-restrictable exploration strategy, we
can simply use the doubling paradigm, that is, we explore the
environment up a certain depth and double the exploration depth in
every step.

We can show that idea yields indeed a search-competitive strategy;
with a factor of 43C for blind agents and 83C for agents with vision.
C is the competitive factor of the exploration strategy, and g is the
enlargement factor from the depth restriction.

This works for arbitrary kinds of environments, we require only that

THIS condition holds.

Searching in Simple Polygons

@ Shortest Watchman Route (Dror et al., 2003)

= offline 8—search-competitive strategy
@ /2-competitive exploration for rectilinear polygons

(Deng et al., 1991)

= 8v/2—search-competitive online strategy for rectilinear polygons
@ 26.5-competitive exploration strategy PolyExplore

(Hoffmann et al., 1998)

= 212-search-competitive online strategy for simple polygons

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 30/39

2006-04-11

Models and Algos for Expl. and Search .

L Search o ShoretWtchman Routs (v et 2009
o

v
ciinear polygons

polyg

LSearching in Simple Polygons 2yt o oy Pl

= 212-search-compelitve oniine strategy for simple polygons

For example, we can apply our approximation framework to simple
polygons. For the offline case, we get an 8-approximation using an
algorithm that computes the shortest watchman route.

In the online setting, we can use the strategy by Deng, Kameda and
Papadimitriou to get a search-competitive strategy for rectilinear
polygons.

And for general simple polygons, we can use PolyExplore by
Hoffmann, Icking, Klein, and Kriegel.

Searching in Polygons with Holes

@ No O(1)-competitive exploration
for polygons with holes (Albers et
al., 1999)

@ Optimal exploration path has
already bad search ratio

@ Enlarge environment

@ Optimal exploration path has
constant search ratio

@ Any online path still has search
ratio Q(k)
= No search-competitive strategy

recursive subproblem

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 31/39

2006-04-11

Models and Algos for Expl. and Search e
LSearch

for polygor
al, 1999)

LSearching in Polygons with Holes

It was shown by Albers, Kursawe and Schuierer that there is no
exploration strategy with a constant competitive factor for polygons
WITH holes.

The scene for the lower bound looks like this, but the details are not
import here. Unfortunately, we cannot use this scene as a lower
bound for searching, because the optimal exploration path has
already a bad search ratio. To solve this problem, we can enlarge the
scene like this. Now, the optimal exploration has a constant search
ratio, while any online exploration has a search ratio in Q(k), so there
is no search-competitive strategy for polygons with holes.

Again, the details are not important here. The more interesting part is
that we can GENERALIZE this idea!

General Lower Bound

If for a given type of environments
@ there is no constant-competitive exploration strategy
@ the lower-bound scene can be enlarged
= there is no search-competitive strategy.

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 32/39

2006-04-11

Models and Algos for Expl. and Search o
LSearch

1ffor a given type of

exploration strategy

LGeneral Lower Bound

So, we can show this theorem: If there is no constant-competitive
exploration and we can enlarge the scene used to prove the lower
bound, then there is no search-competitive strategy.

Relation Between Searching and Exploring

Close relation

@ i constant-competitive, depth-restrictable exploration strategy
= 7 search-competitive strategy

) ﬂ constant-competitive exploration strategy,
but 4 ’extendable’ lower bound
= ﬁ search-competitive strategy

Open guestion

3 search-competitive strategy

& 3 constant-competitive exploration strategy
(for environments fulfilling Vp € £ : |sp(s, p)| = |sp(p,s)|)

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 33/39

2006-04-11

Models and Algos for Expl. and Search e

LSearch

peti
5 extendable’ lower bound
search-competiive strategy

LRelation Between Searching and Exploring

Altogether, we have seen a very close relation between searching
and exploring: If there is a constant-competitive, depth-restrictable
exploration, then there is a search competitive strategy and if there is
no constant-competitive exploration but an extendible lower bound,
then there is no constant-search competitive strategy.

Now, it is an open question, if there is an even closer relation; that is:
is there a search competitive strategy if and only if there is a
constant-competitive exploration?

Onl. exploration of grid polygons Searching
@ Simple polygons @ Quality measure: search ratio
o Lower bound: £ @ Approximation framework

e Expl. strategy SmartDFS

oS<C+lE-3 @ Applied to simple polygons

o 4-competitive @ Lower bound for polygons with
@ Grid polygons with holes holes

e Lower bound: 2 @ Relation between exploration

o Expl. strategy CellExplore and searching

© SSC+IE+3H+W -2

http://www.geometrylab.de/Gridrobot/

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 34/39

2006-04-11

Models and Algos for Expl. and Search
I—Summary

I—Summary

Here is a summary of the results...

Summary

Onl. exploration of grid polygons Searching
o Simple polygons. @ Quality measure: search ratio
. H @ Approximation framework
@ Applied 10 simple polygons
 Lower bound for polygons with
holes

o 3-competiive

@ Grid polygons with holes
o Lower bour @ Relation between exploration
= Expl.sirategy CelExplore and searching
SSZCHIELMIW-2

hitp:liwww.geomerylab delGridrobot/

More important, we have seen that the search ratio gives a strong

relation between exploration and searching.

Thank you!

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 35/39

A Problem with SmartDFS

i |
/Spht cell!

o split cell

= No local criterion for detecting split cells!

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 36/39

2006-04-11

A Problem with SmartDFS

no split cell

Models and Algos for Expl. and Search

Split cell!

l—A Problem with SmartDFS

— Nolocal criterion for detecting spi cells!

In the presence of holes, we have a problem with SmartDFS, that we
can see in this example. We explore the polygon up to THIS cell.
Now, we cannot determine, whether this cell is a split cell or not,
because we cannot distinguish both cases so far. Thus, we have to
proceed with the exploration, until we reach THIS cell. Now, we are
able to distinguish both cases and see that THIS was indeed a split
cell, whereas THIS was no one.

So, the problem is that there is no longer a local criterion for detecting

split cells.

Analyzing technique

@ Successively remove start cell
and cells reserved in the first
step

@ Observe the balance of cells,
edges, and steps

@ Global arguments:
charge holes and curves

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 37/39

2006-04-11

Models and Algos for Expl. and Search

I—Analyzing technique

Analyzing technique

© Successively remove start cell
and cells reserved in the fist

@ Observe the balance of cells,
edges, and steps

@ Global argumens:
charge holes and curves.

Performance of CellExplore

Theorem (Number of Steps)

CellExplore needs at most

1
C+§E+3H—|—W—2

steps to explore a polygon. This bound is tight.

(C: #cells, E: #boundary edges, H: #holes, W “sinuosity”)

===

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 38/39

2006-04-11

Models and Algos for Expl. and Search

L Performance of CellExplore (6 sl oy e

We can show, that the number of steps needed by our strategy is
mainly bounded by the number of cells and half the number of edges.
Additionally, we need at most three steps for every obstacle, and,
unfortunately, we need another parameter, W, which is not very
intuitive. It is used to diffentiate between straight and winded polygons
such as spirals with may turns. To get an idea for what we count in W
observe a corridor of width 3: CellExplore visits this corridor 4 times.
We charge 3 visits to the cells. In the straight part, we can charge the
additional visit to the two boundary edges like shown HERE. In a
bend like here, we do not have two boundary edges for every doubly
visited cell, so we have to count THESE two cells in W.

Performance of CellExplore

Quality measure

@ A search algorithm S is called C-competitive,
if 4A, so that for every environment:

S| < C - |OPT| +A

@ A search algorithm S is called C—search competitive,
if JA, so that for every environment &:

SR(S,£) < C - SRopr(€) + A

Tom Kamphans (Uni Bonn) Models and Algos for Expl. and Search 39/39

2006-04-11

Models and Algos for Expl. and Search

I—Quality measure

Quality measure

@ A search algorithm is called C-competiive,
34, 50 that for every environment:

51<C-[OPT + A

@ Asearch algorithm S is called C-search compeitive,
34, 50 that for every environment

SR(S,€) < C-SRop(€) + A

	Introduction
	Exploring Grid Polygons
	Introduction
	Simple Grid Polygons
	Grid Polygons with Holes

	Search
	Summary
	Appendix

