Exploring Simple Grid Polygons

Christian Icking¹ **Tom Kamphans**² Rolf Klein² Elmar Langetepe²

¹University of Hagen, Praktische Informatik VI, Hagen, Germany.

²University of Bonn, Computer Science I, Bonn, Germany.

COCOON 2005

- Robot, R, has to explore an unknown environment, P
- More precisely, find a tour that
 - visits every part of P at least once
 - returns to the robot's start point
 - can be computed online
 - is as short as possible
- For example: lawn mowing, cleaning

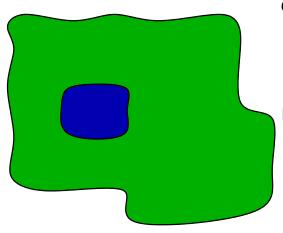
- Robot, R, has to explore an unknown environment, P
- More precisely, find a tour that
 - visits every part of P at least once
 - returns to the robot's start point
 - can be computed online
 - is as short as possible
- For example: lawn mowing, cleaning

- Robot, R, has to explore an unknown environment, P
- More precisely, find a tour that
 - visits every part of P at least once
 - returns to the robot's start point
 - can be computed online
 - is as short as possible
- For example: lawn mowing, cleaning

- Robot, R, has to explore an unknown environment, P
- More precisely, find a tour that
 - visits every part of P at least once
 - returns to the robot's start point
 - can be computed online
 - is as short as possible
- For example: lawn mowing, cleaning

- Robot, R, has to explore an unknown environment, P
- More precisely, find a tour that
 - visits every part of P at least once
 - returns to the robot's start point
 - can be computed online
 - is as short as possible
- For example: lawn mowing, cleaning

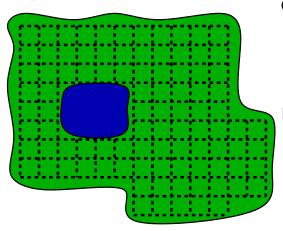
- Robot, R, has to explore an unknown environment, P
- More precisely, find a tour that
 - visits every part of P at least once
 - returns to the robot's start point
 - can be computed online
 - is as short as possible
- For example: lawn mowing, cleaning



Grid polygon:

- Environment is subdivided by an integer grid
- Simple ⇒ No holes

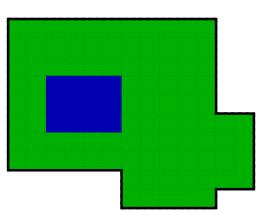
- No vision
- Can sense 4 adjacent cells
- Can enter adjacent, free cell



Grid polygon:

- Environment is subdivided by an integer grid
- Simple ⇒ No holes

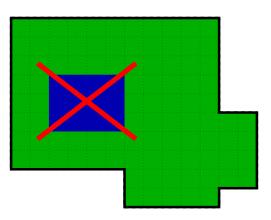
- No vision
- Can sense 4 adjacent cells
- Can enter adjacent, free cell



Grid polygon:

- Environment is subdivided by an integer grid
- Simple ⇒ No holes

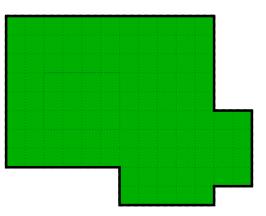
- No vision
- Can sense 4 adjacent cells
- Can enter adjacent, free cell



Grid polygon:

- Environment is subdivided by an integer grid
- Simple ⇒ No holes

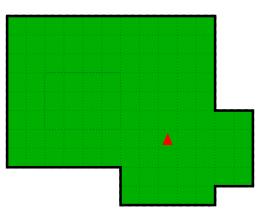
- No vision
- Can sense 4 adjacent cells
- Can enter adjacent, free cell



Grid polygon:

- Environment is subdivided by an integer grid
- Simple ⇒ No holes

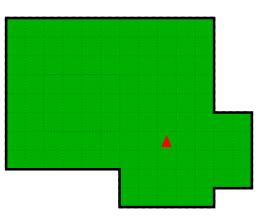
- No vision
- Can sense 4 adjacent cells
- Can enter adjacent, free cell



Grid polygon:

- Environment is subdivided by an integer grid
- Simple ⇒ No holes

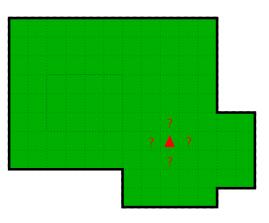
- No vision
- Can sense 4 adjacent cells
- Can enter adjacent, free cell



Grid polygon:

- Environment is subdivided by an integer grid
- Simple ⇒ No holes

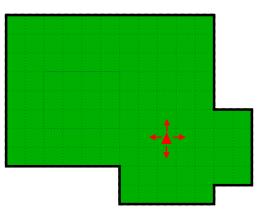
- No vision
- Can sense 4 adjacent cells
- Can enter adjacent, free cell



Grid polygon:

- Environment is subdivided by an integer grid
- Simple ⇒ No holes

- No vision
- Can sense 4 adjacent cells
- Can enter adjacent, free cell



Grid polygon:

- Environment is subdivided by an integer grid
- Simple ⇒ No holes

- No vision
- Can sense 4 adjacent cells
- Can enter adjacent, free cell

Previous Work

Offline (i. e., environment is known to the robot)

- With holes:
 NP-hard [Itai, Papadimitriou, Szwarcfiter; 1982]
- Without holes:

 ⁴/₃-approximation [Ntafos; 1992]

 ⁶/₅-approximation [Arkin, Fekete, Mitchell; 2000]

Online

 With holes: [Icking, Kamphans, Klein, Langetepe; 2000]
 [Gabriely, Rimon; 2000]

Previous Work

Offline (i. e., environment is known to the robot)

- With holes:
 NP-hard [Itai, Papadimitriou, Szwarcfiter; 1982]
- Without holes:

 ⁴/₃-approximation [Ntafos; 1992]

 ⁶/₅-approximation [Arkin, Fekete, Mitchell; 2000]

Online

 With holes: [Icking, Kamphans, Klein, Langetepe; 2000]
 [Gabriely, Rimon; 2000]

Why Simple Polygons?

Theorem (IKKL; 2000)

Lower bound on the online exploration of grid polygons with holes: 2.

Theorem

There is a $\frac{4}{3}$ -competitive online exploration strategy for polygons without holes.

Why Simple Polygons?

Theorem (IKKL; 2000)

Lower bound on the online exploration of grid polygons with holes: 2.

Theorem

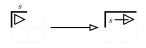
There is a $\frac{4}{3}$ -competitive online exploration strategy for polygons without holes.

A Lower Bound

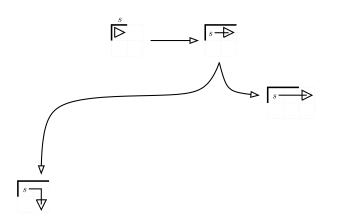
Theorem

No online exploration strategy achieves a factor better than $\frac{7}{6}$ in simple grid polygon.

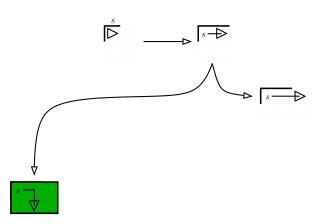
w.l.o.g.: East



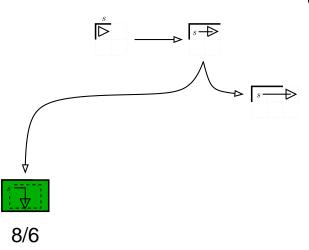
South or East



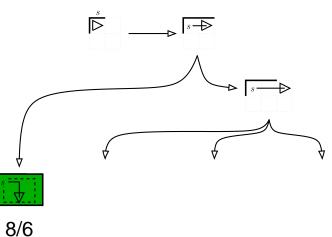
Close Polygon



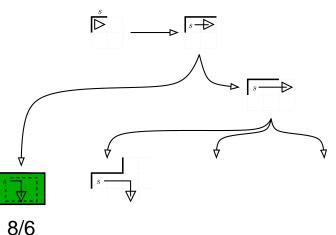
Online vs. Optimal



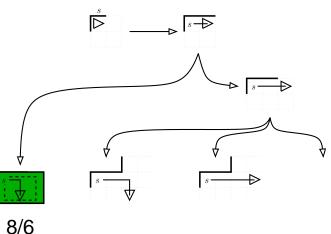
3 Possibilities:



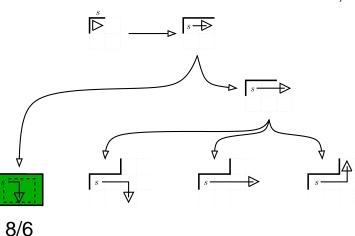
3 Possibilities: South,



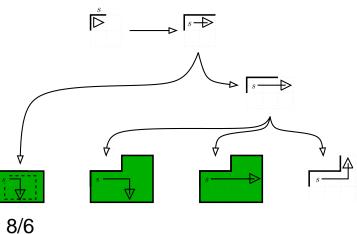
3 Possibilities: South, East,



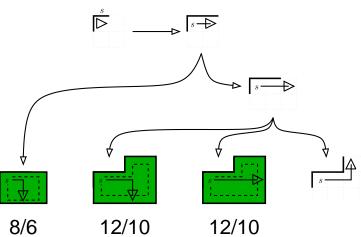
3 Possibilities: South, East, North



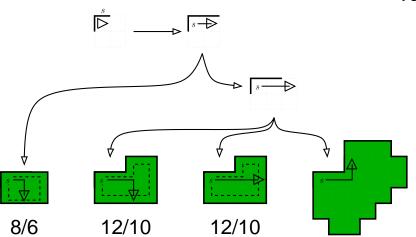
Close Polygon



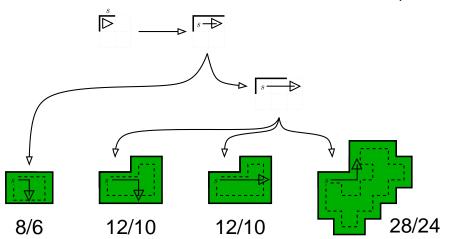
Online vs. Optimal



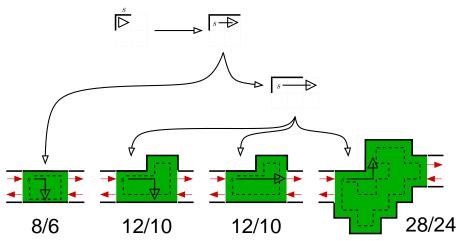
Close Polygon



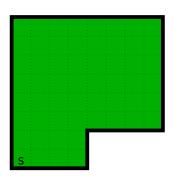
Online vs. Optimal



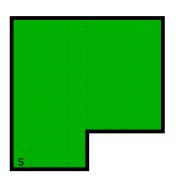
Polygons of arbitrary size



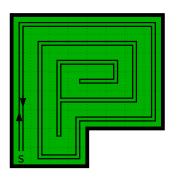
SmartDFS: An exploration strategy (1)



- First idea: Apply depth-first search (DFS)
- Left-hand rule: prefer step to the left over a straight step over a step to the right
- Visits each cell twice!



- First idea: Apply depth-first search (DFS)
- Left-hand rule: prefer step to the left over a straight step over a step to the right
- Visits each cell twice!



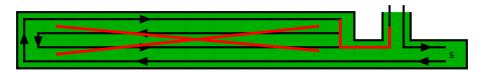
- First idea: Apply depth-first search (DFS)
- Left-hand rule: prefer step to the left over a straight step over a step to the right
- Visits each cell twice!

- DFS visits each cell twice
- More reasonable: Return directly to unvisited cell
- Improved DFS

Improvement 1

- DFS visits each cell twice
- More reasonable: Return directly to unvisited cell
- Improved DFS

Improvement 1



- DFS visits each cell twice
- More reasonable: Return directly to unvisited cell
- Improved DFS

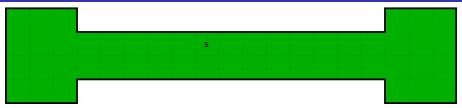
Improvement 1

- DFS visits each cell twice
- More reasonable: Return directly to unvisited cell
- Improved DFS

Improvement 1

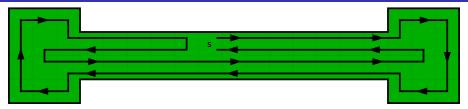
- DFS visits each cell twice
- More reasonable: Return directly to unvisited cell
- Improved DFS

Improvement 1



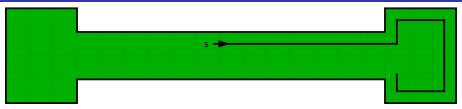
- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2



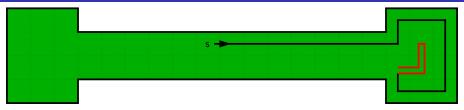
- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2



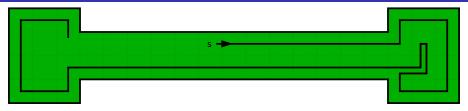
- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2



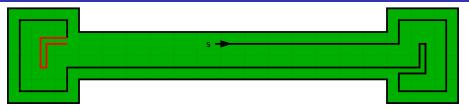
- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2



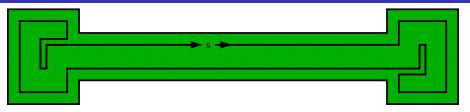
- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2



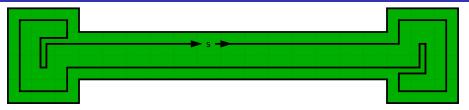
- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2



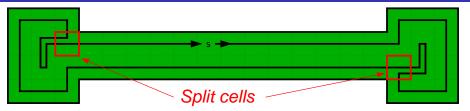
- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2



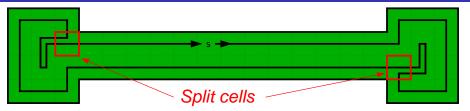
- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2



- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2

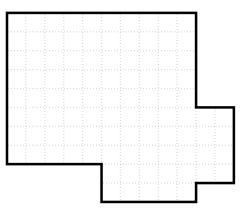


- DFS visits long corridor four times
- More reasonable: Visit right part immediately, continue with the corridor, visit left part, return to s
- Long corridor is traversed only two times!
- Split cells: Set of unvisited cells gets disconnected

Improvement 2

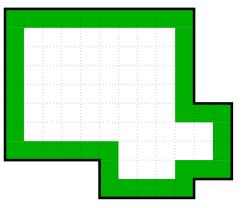
Java Applet

http://www.geometrylab.de/Gridrobot/



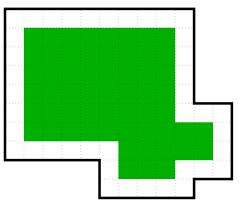
- First layer := Boundary cells of F
- 1-offset :=P without first layer
- Analogously: Second layer
- 2-offset
- and so on
- E: #edges between free and blocked cells

Lemma (Number of edges)



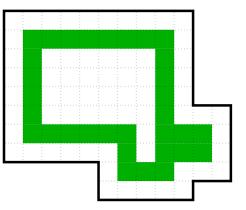
- First layer := Boundary cells of P
- 1-offset :=P without first layer
- Analogously: Second layer
- 2-offset
- and so on
- E: #edges between free and blocked cells

Lemma (Number of edges)



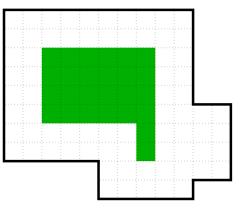
- First layer := Boundary cells of P
- 1-offset :=
 P without first layer
- Analogously: Second layer
- 2-offset
- and so on
- E: #edges between free and blocked cells

Lemma (Number of edges)



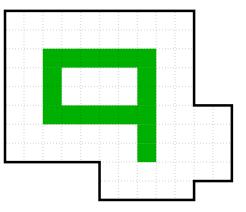
- First layer := Boundary cells of P
- 1-offset :=P without first layer
- Analogously: Second layer
- 2-offset
- and so on
- E: #edges between free and blocked cells

Lemma (Number of edges)



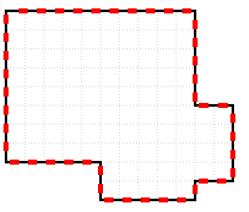
- First layer := Boundary cells of P
- 1-offset :=P without first layer
- Analogously: Second layer
- 2-offset
- and so on
- E: #edges between free and blocked cells

Lemma (Number of edges)



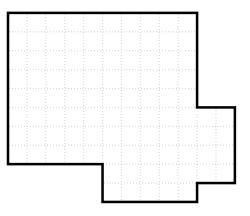
- First layer := Boundary cells of P
- 1-offset :=P without first layer
- Analogously: Second layer
- 2-offset
- and so on
- E: #edges between free and blocked cells

Lemma (Number of edges)



- First layer := Boundary cells of P
- 1-offset :=P without first layer
- Analogously: Second layer
- 2-offset
- and so on
- E: #edges between free and blocked cells

Lemma (Number of edges)



- First layer := Boundary cells of P
- 1-offset :=P without first layer
- Analogously: Second layer
- 2-offset
- and so on
- E: #edges between free and blocked cells

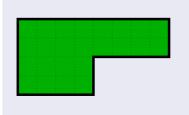
Lemma (Number of edges)

Lemma (Shortest Path)

Shortest path between two cells in $P \le \frac{1}{2}E(P) - 2$.

Lemma (Shortest Path)

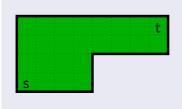
Shortest path between two cells in $P \le \frac{1}{2}E(P) - 2$.



- Worst case: Both cells in the first layer
- $|\pi_{\rm cw}| = |\pi_{\rm ccw}|$ = $\frac{1}{2} \cdot \text{\#cells}$ in the first layer
- #cells in the first layer#edges 4

Lemma (Shortest Path)

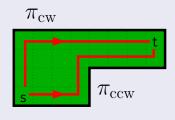
Shortest path between two cells in $P \le \frac{1}{2}E(P) - 2$.



- Worst case: Both cells in the first layer
- $|\pi_{\text{cw}}| = |\pi_{\text{ccw}}|$ = $\frac{1}{2} \cdot \text{#cells}$ in the first layer
- #cells in the first layer#edges 4

Lemma (Shortest Path)

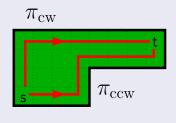
Shortest path between two cells in $P \le \frac{1}{2}E(P) - 2$.



- Worst case: Both cells in the first layer
- $|\pi_{cw}| = |\pi_{ccw}|$ = $\frac{1}{2} \cdot \#$ cells in the first layer
- #cells in the first layer#edges 4

Lemma (Shortest Path)

Shortest path between two cells in $P \le \frac{1}{2}E(P) - 2$.



- Worst case: Both cells in the first layer
- $|\pi_{cw}| = |\pi_{ccw}|$ = $\frac{1}{2} \cdot \#$ cells in the first layer
- #cells in the first layer#edges 4

Theorem (Number of Steps)

$$S \leq C + \frac{1}{2}E - 3$$
 (tight!)

- Proof by induction on the number of split cells
- Induction base: No split cell
- Visit every cell in C 1 steps
- Return to s in $\leq \frac{1}{2}E 2$ steps (Shortest Path Lemma)

Theorem (Number of Steps)

$$S \leq C + \frac{1}{2}E - 3$$
 (tight!)

- Proof by induction on the number of split cells
- Induction base: No split cell
- Visit every cell in C − 1 steps
- Return to s in $\leq \frac{1}{2}E 2$ steps (Shortest Path Lemma)

Theorem (Number of Steps)

$$S \leq C + \frac{1}{2}E - 3$$
 (tight!)

- Proof by induction on the number of split cells
- Induction base: No split cell
- Visit every cell in C − 1 steps
- Return to s in $\leq \frac{1}{2}E 2$ steps (Shortest Path Lemma)

Theorem (Number of Steps)

$$S \leq C + \frac{1}{2}E - 3 \qquad (tight!)$$

- Proof by induction on the number of split cells
- Induction base: No split cell
- Visit every cell in C − 1 steps
- Return to s in $\leq \frac{1}{2}E 2$ steps (Shortest Path Lemma)

Theorem (Number of Steps)

$$S \leq C + \frac{1}{2}E - 3$$
 (tight!)

- Proof by induction on the number of split cells
- Induction base: No split cell
- Visit every cell in C − 1 steps
- Return to s in $\leq \frac{1}{2}E 2$ steps (Shortest Path Lemma)

Competitivity

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive (i. e., $S_{SmartDFS} \leq \frac{4}{3}$ $S_{Optimal}$)

Definition

Narrow passage: Corridors of width 1 or 2.

Definition

Uncritical polygon: neither narrow passages nor split cells in the first layer.

Competitivity

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive (i. e., $S_{SmartDFS} \leq \frac{4}{3}$ $S_{Optimal}$)

Definition

Narrow passage: Corridors of width 1 or 2.

Definition

Uncritical polygon: neither narrow passages nor split cells in the first layer.

Competitivity

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive (i. e., $S_{SmartDFS} \leq \frac{4}{3}$ $S_{Optimal}$)

Definition

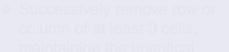
Narrow passage: Corridors of width 1 or 2.

Definition

Uncritical polygon: neither narrow passages nor split cells in the first layer.

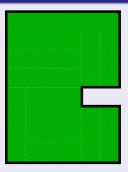
Lemma (Edges in uncritical polygons)

For uncritical grid polygons: $E(P) \leq \frac{2}{3}C(P) + 6$



Lemma (Edges in uncritical polygons)

For uncritical grid polygons: $E(P) \leq \frac{2}{3}C(P) + 6$

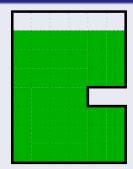


- Successively remove row or column of at least 3 cells, maintaining the uncritical property
- Ends with 3×3 polygon, $E = \frac{2}{3}C + 6$
- $E \leq \frac{2}{3}C + 6$ fulfilled in every step

Lemma (Edges in uncritical polygons)

For uncritical grid polygons: $E(P) \leq \frac{2}{3}C(P) + 6$

Proof.

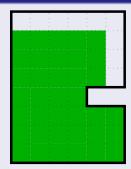


- Successively remove row or column of at least 3 cells, maintaining the uncritical property
- Ends with 3 × 3 polygon,
- $E < \frac{2}{3}C + 6$ fulfilled in every step

COCOON 2005

Lemma (Edges in uncritical polygons)

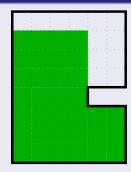
For uncritical grid polygons: $E(P) \leq \frac{2}{3}C(P) + 6$



- Successively remove row or column of at least 3 cells, maintaining the uncritical property
- Ends with 3 × 3 polygon,
- $E < \frac{2}{5}C + 6$ fulfilled in every step

Lemma (Edges in uncritical polygons)

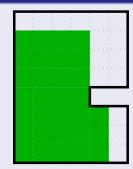
For uncritical grid polygons: $E(P) \leq \frac{2}{3}C(P) + 6$



- Successively remove row or column of at least 3 cells, maintaining the uncritical property
- Ends with 3 × 3 polygon,
- $E < \frac{2}{5}C + 6$ fulfilled in every step

Lemma (Edges in uncritical polygons)

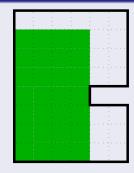
For uncritical grid polygons: $E(P) \leq \frac{2}{3}C(P) + 6$



- Successively remove row or column of at least 3 cells, maintaining the uncritical property
- Ends with 3×3 polygon, $E = \frac{2}{3}C + 6$
- $E \leq \frac{2}{3}C + 6$ fulfilled in every step

Lemma (Edges in uncritical polygons)

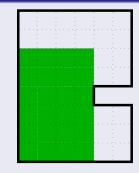
For uncritical grid polygons: $E(P) \leq \frac{2}{3}C(P) + 6$



- Successively remove row or column of at least 3 cells, maintaining the uncritical property
- Ends with 3×3 polygon, $E = \frac{2}{3}C + 6$
- $E \leq \frac{2}{3}C + 6$ fulfilled in every step

Lemma (Edges in uncritical polygons)

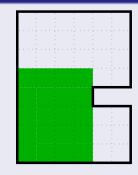
For uncritical grid polygons: $E(P) \leq \frac{2}{3}C(P) + 6$



- Successively remove row or column of at least 3 cells, maintaining the uncritical property
- Ends with 3×3 polygon, $E = \frac{2}{3}C + 6$
- $E \leq \frac{2}{3}C + 6$ fulfilled in every step

Lemma (Edges in uncritical polygons)

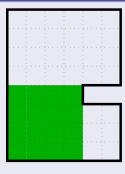
For uncritical grid polygons: $E(P) \leq \frac{2}{3}C(P) + 6$



- Successively remove row or column of at least 3 cells, maintaining the uncritical property
- Ends with 3×3 polygon, $E = \frac{2}{3}C + 6$
- $E \leq \frac{2}{3}C + 6$ fulfilled in every step

Lemma (Edges in uncritical polygons)

For uncritical grid polygons: $E(P) \leq \frac{2}{3}C(P) + 6$



- Successively remove row or column of at least 3 cells, maintaining the uncritical property
- Ends with 3×3 polygon, $E = \frac{2}{3}C + 6$
- $E \leq \frac{2}{3}C + 6$ fulfilled in every step

Lemma (Edges in uncritical polygons)

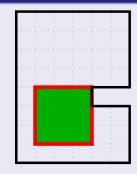
For uncritical grid polygons: $E(P) \leq \frac{2}{3}C(P) + 6$



- Successively remove row or column of at least 3 cells, maintaining the uncritical property
- Ends with 3×3 polygon, $E = \frac{2}{3}C + 6$
- $E \leq \frac{2}{3}C + 6$ fulfilled in every step

Lemma (Edges in uncritical polygons)

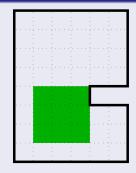
For uncritical grid polygons: $E(P) \leq \frac{2}{3}C(P) + 6$



- Successively remove row or column of at least 3 cells, maintaining the uncritical property
- Ends with 3×3 polygon, $E = \frac{2}{3}C + 6$
- $E \leq \frac{2}{3}C + 6$ fulfilled in every step

Lemma (Edges in uncritical polygons)

For uncritical grid polygons: $E(P) \leq \frac{2}{3}C(P) + 6$



- Successively remove row or column of at least 3 cells, maintaining the uncritical property
- Ends with 3 × 3 polygon, $E = \frac{2}{3}C + 6$
- $E \leq \frac{2}{3}C + 6$ fulfilled in every step

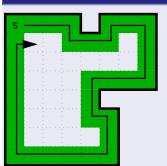
Lemma (Exploration of uncritical polygons)

For uncritical grid polygons: $S(P) \leq C(P) + \frac{1}{2}E(P) - \frac{5}{2}$.

- $S(P) \le C(P) + \frac{1}{2}E(P) 3$ shown
- Used shortest path lemma
 - $(sp(c,s) \le \frac{1}{2}E(P) 2)$
- Proof assumed c, s in the first layer
- Now: c in the 1-offset

Lemma (Exploration of uncritical polygons)

For uncritical grid polygons: $S(P) \leq C(P) + \frac{1}{2}E(P) - \frac{5}{2}$.



- $S(P) \le C(P) + \frac{1}{2}E(P) \frac{3}{3}$ shown
- Used shortest path lemma $(sp(c, s) \le \frac{1}{2}E(P) 2)$
- Proof assumed *c*, *s* in the first layer!
- Now: c in the 1-offset
- 2 steps gained!

Lemma (Exploration of uncritical polygons)

For uncritical grid polygons: $S(P) \le C(P) + \frac{1}{2}E(P) - \frac{5}{2}$.

- $S(P) \le C(P) + \frac{1}{2}E(P) 3$ shown
- Used shortest path lemma $(sp(c, s) \le \frac{1}{2}E(P) 2)$
- Proof assumed *c*, *s* in the first layer!
- Now: c in the 1-offset
- 2 steps gained!

Lemma (Exploration of uncritical polygons)

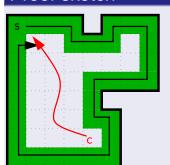
For uncritical grid polygons: $S(P) \le C(P) + \frac{1}{2}E(P) - \frac{5}{2}$.



- $S(P) \le C(P) + \frac{1}{2}E(P) 3$ shown
- Used shortest path lemma $(sp(c, s) \leq \frac{1}{2}E(P) 2)$
- Proof assumed c, s in the first layer!
- Now: c in the 1-offset
- 2 steps gained!

Lemma (Exploration of uncritical polygons)

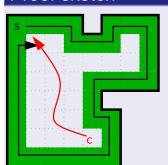
For uncritical grid polygons: $S(P) \le C(P) + \frac{1}{2}E(P) - \frac{5}{2}$.



- $S(P) \le C(P) + \frac{1}{2}E(P) 3$ shown
- Used shortest path lemma $(sp(c, s) \leq \frac{1}{2}E(P) 2)$
- Proof assumed c, s in the first layer!
- Now: c in the 1-offset
- 2 steps gained!

Lemma (Exploration of uncritical polygons)

For uncritical grid polygons: $S(P) \le C(P) + \frac{1}{2}E(P) - \frac{5}{2}$.



- $S(P) \le C(P) + \frac{1}{2}E(P) 3$ shown
- Used shortest path lemma $(sp(c, s) \le \frac{1}{2}E(P) 2)$
- Proof assumed c, s in the first layer!
- Now: c in the 1-offset
- 2 steps gained!

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive.

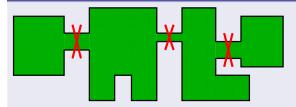
Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive.

- Remove narrow passages (explored optimally)
- \Rightarrow Split *P* into P_i
- Consider P_i separately

Theorem (Competitivity)

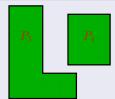
SmartDFS is $\frac{4}{3}$ competitive.



- Remove narrow passages (explored optimally)
- \Rightarrow Split *P* into P_i
- Consider P_i separately

Theorem (Competitivity)

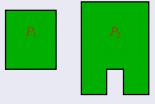
SmartDFS is $\frac{4}{3}$ competitive.

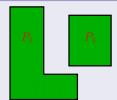


- Remove narrow passages (explored optimally)
- \Rightarrow Split *P* into P_i
- Consider P_i separately

Theorem (Competitivity)

SmartDFS is $\frac{4}{3}$ competitive.





- Remove narrow passages (explored optimally)
- $\bullet \Rightarrow Split P into P_i$
- Consider P_i separately

- Show $S(P_i) \le \frac{4}{3}C(P_i) 2$ by induction on the number of split cells in the first layer
- Ind. base: No split cell ⇒ uncritical polygon ⇒

$$S(P_i) \le C(P_i) + rac{1}{2}E(P_i) - 5$$
 by exploration lemma
 $\le C(P_i) + rac{1}{2}\left(rac{2}{3}C(P_i) + 6
ight) - 5$ by edges lemma
 $= rac{4}{3}C(P_i) - 2$

- Show $S(P_i) \le \frac{4}{3}C(P_i) 2$ by induction on the number of split cells in the first layer
- Ind. base: No split cell ⇒ uncritical polygon ⇒

$$S(P_i) \le C(P_i) + \frac{1}{2}E(P_i) - 5$$
 by exploration lemma
 $\le C(P_i) + \frac{1}{2}\left(\frac{2}{3}C(P_i) + 6\right) - 5$ by edges lemma
 $= \frac{4}{3}C(P_i) - 2$

- Show $S(P_i) \le \frac{4}{3}C(P_i) 2$ by induction on the number of split cells in the first layer
- Ind. base: No split cell ⇒ uncritical polygon ⇒

$$S(P_i) \le C(P_i) + \frac{1}{2}E(P_i) - 5$$
 by exploration lemma
$$\le C(P_i) + \frac{1}{2}\left(\frac{2}{3}C(P_i) + 6\right) - 5$$
 by edges lemma
$$= \frac{4}{3}C(P_i) - 2$$

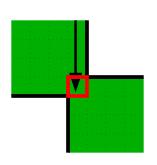
- Show $S(P_i) \le \frac{4}{3}C(P_i) 2$ by induction on the number of split cells in the first layer
- Ind. base: No split cell ⇒ uncritical polygon ⇒

$$S(P_i) \le C(P_i) + \frac{1}{2}E(P_i) - 5$$
 by exploration lemma
 $\le C(P_i) + \frac{1}{2}\left(\frac{2}{3}C(P_i) + 6\right) - 5$ by edges lemma
 $= \frac{4}{3}C(P_i) - 2$

- Show $S(P_i) \le \frac{4}{3}C(P_i) 2$ by induction on the number of split cells in the first layer
- Ind. base: No split cell ⇒ uncritical polygon ⇒

$$S(P_i) \le C(P_i) + rac{1}{2}E(P_i) - 5$$
 by exploration lemma
$$\le C(P_i) + rac{1}{2}\left(rac{2}{3}C(P_i) + 6
ight) - 5 ext{ by edges lemma}$$

$$= rac{4}{3}C(P_i) - 2$$



•
$$S(P_i) = S(P') + S(P'')$$

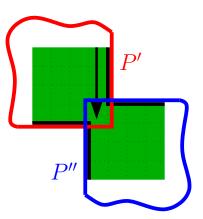
•
$$C(P_i) = C(P') + C(P'') - 1$$

$$S(P_i) = S(P') + S(P'')$$

$$\leq \frac{4}{3}C(P') - 2 + \frac{4}{3}C(P'') - 2$$

$$= \frac{4}{3}C(P_i) + \frac{4}{3} - 4$$

$$< \frac{4}{3}C(P_i) - 2$$



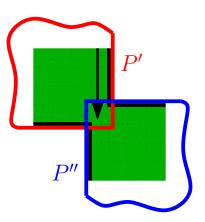
- Split P_i into P', P''
- $S(P_i) = S(P') + S(P'')$
- $C(P_i) = C(P') + C(P'') 1$

$$S(P_i) = S(P') + S(P'')$$

$$\leq \frac{4}{3}C(P') - 2 + \frac{4}{3}C(P'') - 2$$

$$= \frac{4}{3}C(P_i) + \frac{4}{3} - 4$$

$$< \frac{4}{3}C(P_i) - 2$$



- Split P_i into P', P''
- $S(P_i) = S(P') + S(P'')$

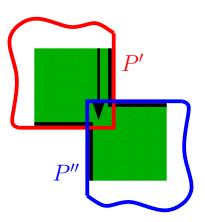
•
$$C(P_i) = C(P') + C(P'') - 1$$

$$S(P_i) = S(P') + S(P'')$$

$$\leq \frac{4}{3}C(P') - 2 + \frac{4}{3}C(P'') - 2$$

$$= \frac{4}{3}C(P_i) + \frac{4}{3} - 4$$

$$< \frac{4}{3}C(P_i) - 2$$



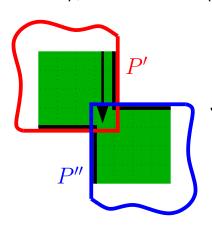
- Split P_i into P', P''
- $S(P_i) = S(P') + S(P'')$
- $C(P_i) = C(P') + C(P'') 1$

$$S(P_i) = S(P') + S(P'')$$

$$\leq \frac{4}{3}C(P') - 2 + \frac{4}{3}C(P'') - 2$$

$$= \frac{4}{3}C(P_i) + \frac{4}{3} - 4$$

$$< \frac{4}{3}C(P_i) - 2$$



• Split
$$P_i$$
 into P' , P''

•
$$S(P_i) = S(P') + S(P'')$$

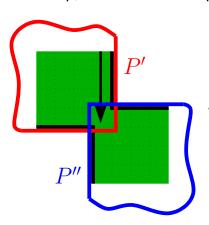
•
$$C(P_i) = C(P') + C(P'') - 1$$

$$S(P_i) = S(P') + S(P'')$$

$$\leq \frac{4}{3}C(P') - 2 + \frac{4}{3}C(P'') - 2$$

$$= \frac{4}{3}C(P_i) + \frac{4}{3} - 4$$

$$< \frac{4}{3}C(P_i) - 2$$



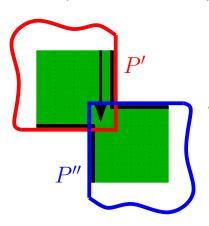
- Split P_i into P', P''
- $S(P_i) = S(P') + S(P'')$
- $C(P_i) = C(P') + C(P'') 1$

$$S(P_i) = S(P') + S(P'')$$

$$\leq \frac{4}{3}C(P') - 2 + \frac{4}{3}C(P'') - 2$$

$$= \frac{4}{3}C(P_i) + \frac{4}{3} - 4$$

$$< \frac{4}{3}C(P_i) - 2$$



• Split
$$P_i$$
 into P' , P''

•
$$S(P_i) = S(P') + S(P'')$$

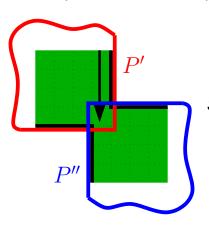
•
$$C(P_i) = C(P') + C(P'') - 1$$

$$S(P_i) = S(P') + S(P'')$$

$$\leq \frac{4}{3}C(P') - 2 + \frac{4}{3}C(P'') - 2$$

$$= \frac{4}{3}C(P_i) + \frac{4}{3} - 4$$

$$< \frac{4}{3}C(P_i) - 2$$



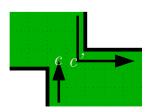
- Split P_i into P', P''
- $S(P_i) = S(P') + S(P'')$
- $C(P_i) = C(P') + C(P'') 1$

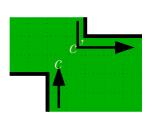
$$S(P_i) = S(P') + S(P'')$$

$$\leq \frac{4}{3}C(P') - 2 + \frac{4}{3}C(P'') - 2$$

$$= \frac{4}{3}C(P_i) + \frac{4}{3} - 4$$

$$< \frac{4}{3}C(P_i) - 2$$





- Split P_i into P', P"
- Q := largest rectangle containing both c, c'

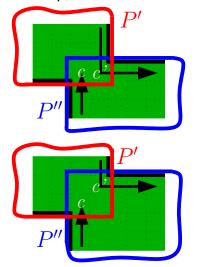
•
$$C(P_i) = C(P') + C(P'') - |Q|$$

$$S(P_i) = S(P') + S(P'') - |Q|$$

$$\leq \frac{4}{3}C(P') + \frac{4}{3}C(P'') - 4 - |Q|$$

$$= \frac{4}{3}C(P_i) + \frac{1}{3}(|Q| - 6) - 2$$

$$< \frac{4}{3}C(P_i) - 2 \qquad \Box$$



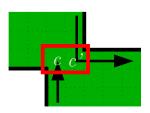
- Split P_i into P', P''
- Q := largest rectangle containing both c, c'
- $C(P_i) = C(P') + C(P'') |Q|$

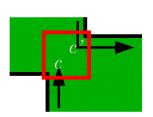
$$S(P_i) = S(P') + S(P'') - |Q|$$

$$\leq \frac{4}{3}C(P') + \frac{4}{3}C(P'') - 4 - |Q|$$

$$= \frac{4}{3}C(P_i) + \frac{1}{3}(|Q| - 6) - 2$$

$$< \frac{4}{3}C(P_i) - 2 \qquad \Box$$





- Split P_i into P', P''
- Q := largest rectangle containing both c, c'

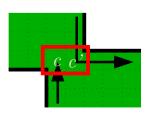
•
$$C(P_i) = C(P') + C(P'') - |Q|$$

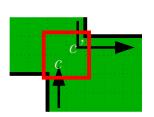
$$S(P_i) = S(P') + S(P'') - |Q|$$

$$\leq \frac{4}{3}C(P') + \frac{4}{3}C(P'') - 4 - |Q|$$

$$= \frac{4}{3}C(P_i) + \frac{1}{3}(|Q| - 6) - 2$$

$$< \frac{4}{3}C(P_i) - 2 \qquad \square$$





- Split P_i into P', P''
- Q := largest rectangle containing both c, c'

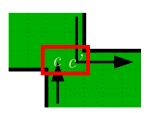
•
$$C(P_i) = C(P') + C(P'') - |Q|$$

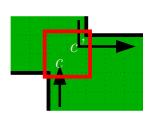
$$S(P_i) = S(P') + S(P'') - |Q|$$

$$\leq \frac{4}{3}C(P') + \frac{4}{3}C(P'') - 4 - |Q|$$

$$= \frac{4}{3}C(P_i) + \frac{1}{3}(|Q| - 6) - 2$$

$$< \frac{4}{3}C(P_i) - 2 \qquad \square$$





- Split P_i into P', P''
- Q := largest rectangle containing both c, c'

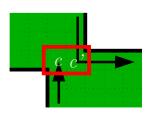
•
$$C(P_i) = C(P') + C(P'') - |Q|$$

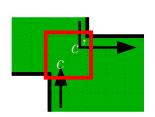
$$S(P_i) = S(P') + S(P'') - |Q|$$

$$\leq \frac{4}{3}C(P') + \frac{4}{3}C(P'') - 4 - |Q|$$

$$= \frac{4}{3}C(P_i) + \frac{1}{3}(|Q| - 6) - 2$$

$$< \frac{4}{3}C(P_i) - 2 \qquad \Box$$





- Split P_i into P', P''
- Q := largest rectangle containing both c, c'

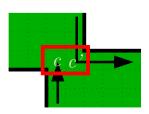
•
$$C(P_i) = C(P') + C(P'') - |Q|$$

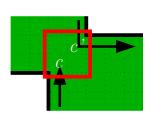
$$S(P_i) = S(P') + S(P'') - |Q|$$

$$\leq \frac{4}{3}C(P') + \frac{4}{3}C(P'') - 4 - |Q|$$

$$= \frac{4}{3}C(P_i) + \frac{1}{3}(|Q| - 6) - 2$$

$$< \frac{4}{3}C(P_i) - 2 \square$$





- Split P_i into P', P''
- Q := largest rectangle containing both c, c'

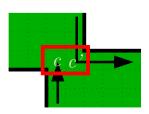
•
$$C(P_i) = C(P') + C(P'') - |Q|$$

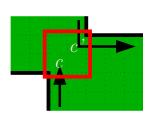
$$S(P_i) = S(P') + S(P'') - |Q|$$

$$\leq \frac{4}{3}C(P') + \frac{4}{3}C(P'') - 4 - |Q|$$

$$= \frac{4}{3}C(P_i) + \frac{1}{3}(|Q| - 6) - 2$$

$$< \frac{4}{3}C(P_i) - 2 \qquad \Box$$





- Split P_i into P', P''
- Q := largest rectangle containing both c, c'

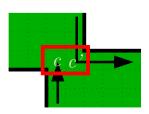
•
$$C(P_i) = C(P') + C(P'') - |Q|$$

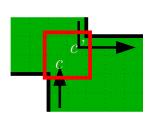
$$S(P_i) = S(P') + S(P'') - |Q|$$

$$\leq \frac{4}{3}C(P') + \frac{4}{3}C(P'') - 4 - |Q|$$

$$= \frac{4}{3}C(P_i) + \frac{1}{3}(|Q| - 6) - 2$$

$$< \frac{4}{3}C(P_i) - 2 \qquad \Box$$





- Split P_i into P', P''
- Q := largest rectangle containing both c, c'

•
$$C(P_i) = C(P') + C(P'') - |Q|$$

$$S(P_i) = S(P') + S(P'') - |Q|$$

 $\leq \frac{4}{3}C(P') + \frac{4}{3}C(P'') - 4 - |Q|$
 $= \frac{4}{3}C(P_i) + \frac{1}{3}(|Q| - 6) - 2$
 $< \frac{4}{3}C(P_i) - 2$

Problem: Online exploration of simple grid polygons

- Lower Bound: $\frac{7}{6}$
- Exploration strategy SmartDFS
- $S \le C + \frac{1}{2}E 3$
- $\frac{4}{3}$ -competitive

Problem: Online exploration of simple grid polygons

- Lower Bound: ⁷/₆
- Exploration strategy SmartDFS
- $S \le C + \frac{1}{2}E 3$
- $\frac{4}{3}$ -competitive

Problem: Online exploration of simple grid polygons

- Lower Bound: $\frac{7}{6}$
- Exploration strategy SmartDFS
- $S \le C + \frac{1}{2}E 3$
- $\frac{4}{3}$ -competitive

Problem: Online exploration of simple grid polygons

- Lower Bound: $\frac{7}{6}$
- Exploration strategy SmartDFS
- $S \le C + \frac{1}{2}E 3$
- $\frac{4}{3}$ -competitive

Problem: Online exploration of simple grid polygons

- Lower Bound: $\frac{7}{6}$
- Exploration strategy SmartDFS
- $S \le C + \frac{1}{2}E 3$
- $\frac{4}{3}$ -competitive

Problem: Online exploration of simple grid polygons

- Lower Bound: $\frac{7}{6}$
- Exploration strategy SmartDFS
- $S \le C + \frac{1}{2}E 3$
- $\frac{4}{3}$ -competitive

Thank you!