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The Problem

Robot, R, has to explore an unknown environment, P
More precisely, find a tour that

visits every part of P at least once
returns to the robot’s start point
can be computed online
is as short as possible

For example: lawn mowing, cleaning
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Introduction

The Problem

We consider the problem of a robot that has to explore an
environment that is unknown to the robot.
More precisely, we want to find a path that visits every part of the
environment at least once and returns to start point. The environment
is unknown to the robot, so we want to compute our path online. We
use the length of the robot’s path as quality measure; thus, we want
to keep the path as short as possible.



Environment and Robot

?

?

?

?

Grid polygon:

Environment is
subdivided by an integer
grid

Simple ⇒ No holes

Robot

No vision

Can sense 4 adjacent
cells

Can enter adjacent, free
cell
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Introduction

Environment and Robot

We deal with a special kind of environments we call grid-polygons,
that is, we assume, that the environment is subdivided by an integer
grid.
Imagine, we want to mow a grass like this, then we can subdivide the
environment according to the size of the tool.
Here, we restrict ourselves to simple polygons, that is, there are no
obstacles inside the polygon.
We assume, that the robot can sense only the four cells that are
adjacent to the current position. The robot can move from one cell to
an adjacent cell that is part of the polygon.



Previous Work

Offline (i. e., environment is known to the robot)
With holes:
NP-hard [Itai, Papadimitriou, Szwarcfiter; 1982]

Without holes:
4
3 -approximation [Ntafos; 1992]
6
5 -approximation [Arkin, Fekete, Mitchell; 2000]

Online
With holes:
[Icking, Kamphans, Klein, Langetepe; 2000]
[Gabriely, Rimon; 2000]
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Introduction

Previous Work

It is known, that the offline case where the environment is known to
the robot is NP-hard for polygons with holes. For polygons without
holes there are some approximations.
The online case for polygons with holes was considered by ourselves
and independently by Gabriely and Rimon.



Why Simple Polygons?

Theorem (IKKL; 2000)
Lower bound on the online exploration of grid polygons with holes: 2.

Theorem

There is a 4
3 -competitive online exploration strategy for polygons

without holes.
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Introduction

Why Simple Polygons?

So, the case of general grid polygons is already solved, so why are
we interested in simple grid polygons? Not surprisingly, we can
explore simple polygons more efficiently. More precisely, we have a
lower bound of 2 for general grid polygons.
On the other hand, we will see that we can achieve a competitive
factor of 4/3 in SIMPLE grid polygons.



A Lower Bound

Theorem

No online exploration strategy achieves a factor better than 7
6 in simple

grid polygon.
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A Lower Bound

But first, let me give you a lower bound on our problem: It can be
shown that no online exploration strategy can achieve a factor better
than 7/6.



Proof: Lower Bound

s

s

s

s

s

8/6

s s sss

12/1012/10

s

28/24

Tom Kamphans (Uni Bonn) Exploring Simple Grid Polygons COCOON 2005 7 / 23



Proof: Lower Bound

s

s

s

s

s

8/6

s s sss

12/1012/10

s

28/2420
05

-0
8-

29
Exploring Simple Grid Polygons

Lower Bound

Proof: Lower Bound

We assume, that the robot starts in a corner of the polygon and moves one
step to the east. If the robot walks south, we can used a mirrored
construction.
For the second step, the robot has two possibilities: First, it may walk to the
south, leaving the polygons boundary. Second, it could continue with a step
to the east.
In the first case, we close the polygon like this. Now, whatever the robot does,
it needs at least 8 steps, whereas the optimal solution needs only 6 steps.
In the second case, the robot has three possiblities: It can move S/E/N.
In the first two cases, we close the polygon like this, and get a l.b. of 12

10 .
In the more interesting case, the robot continues to follow the wall and we
close the polygon is this way. Now, the robot needs at least 28 steps, the
optimal strategy needs 24 steps.

These blocks have limited size. To get a general lower bound, we have to

construct polygons of arbitrary size. We can do this by repeating this

construction: As soon as the robot leaves one block, it enters the start cell of

the next block and the ’game’ starts again.



SmartDFS: An exploration strategy (1)

s

First idea: Apply depth-first search
(DFS)

Left-hand rule: prefer step to the left
over a straight step over a step to
the right

Visits each cell twice!
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An Exploration Strategy

SmartDFS: An exploration strategy (1)

A first idea for the exploration is, to use a simple depth-first search.
We use the left-hand rule, that is, we always keep the polygons
boundary and the visited cells on the left side of the robot. Of course,
DFS visits each cell twice.



SmartDFS: An exploration strategy (2)

s

DFS visits each cell twice

More reasonable: Return directly to unvisited cell

Improved DFS

Improvement 1
Return directly to those cells that have unexplored neighbors.
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An Exploration Strategy

SmartDFS: An exploration strategy (2)

Visiting each cell twice is not very efficient, we can do better. In this
example, DFS visits each cell in the long corridor twice. Of course, it
is more reasonable to omit the second visit of the long corridor and
walk directly to the unexplored cell ⊗ so we get a path like this.
So the first improvement to DFS is to return directly to those cells that
have unexplored neighbors.



SmartDFS: An exploration strategy (3)

s

Split cells

DFS visits long corridor four times

More reasonable: Visit right part immediately, continue with the
corridor, visit left part, return to s

Long corridor is traversed only two times!

Split cells: Set of unvisited cells gets disconnected

Improvement 2
Detect and handle split cells (i. e., prefer parts of P farther away from
the start).

Tom Kamphans (Uni Bonn) Exploring Simple Grid Polygons COCOON 2005 10 / 23



SmartDFS: An exploration strategy (3)

s

Split cells

DFS visits long corridor four times

More reasonable: Visit right part immediately, continue with the
corridor, visit left part, return to s

Long corridor is traversed only two times!

Split cells: Set of unvisited cells gets disconnected

Improvement 2
Detect and handle split cells (i. e., prefer parts of P farther away from
the start).

20
05

-0
8-

29
Exploring Simple Grid Polygons

An Exploration Strategy

SmartDFS: An exploration strategy (3)

But we still can do better. In this case, even the improved version of
DFS visits the long corridor in the middle four times.
It is more reasonable to explore the polygon up to this cell. Now, we
diverge from the left-hand rule and explore the right part first. Then,
we continue with the corridor, visit the left part and return to the start.
Now, we visit the corridor in the middle only two times!
The cells on which we diverge from the left-hand rule have the
property, that the unvisited cells split in two components after the cell
is visited, we call cells like this split cells.
Thus, the second improvement to DFS is to detect split and handle
split cells. Basically, we want to deal with components that are farther
away from the start first.



Java Applet

http://www.geometrylab.de/Gridrobot/
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An Exploration Strategy

Java Applet



Layer and Offset

First layer :=
Boundary cells of P

1-offset :=
P without first layer

Analogously: Second layer

2-offset

and so on

E : #edges between free and
blocked cells

Lemma (Number of edges)

P ′ is `-offset of P ⇒ E(P ′) ≤ E(P)− 8`.
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Analysis

Layer and Offset

We need some definitions and lemmata for the analysis of our
strategy. First, we call the boundary cells of P the first layer of P. P
without its first layer is called the 1-offset of P. The boundary cells of
the 1-offset are called the second layer of P, P without its first and
second layer is called the 2-offset and so on.
Now, E be the number of edges between a free cell and a blocked
cell. In this polygon, for example, we count the edges shown in red.
It is easy to see that the `-offset of a polygon P has at least 8` edges
less than P.



Shortest Paths Lengths

Lemma (Shortest Path)

Shortest path between two cells in P ≤ 1
2E(P)− 2.

Proof sketch.

s

t

πcw

πccw

Worst case:
Both cells in the first layer

|πcw| = |πccw|
= 1

2 · #cells in the first layer

#cells in the first layer
≤ #edges− 4
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Analysis

Shortest Paths Lengths

Next, we can bound the length of a shortest path inside a grid
polygon by half the number of edges −2.
To show this, we assume the worst case, that is, both cells are located
in the first layer of P. Now, observe the paths in first layer clockwise
and counter-clockwise from s to t . In the worst case, both path have
the same length: half the number of cells in the first layer. It is easy to
see that the number of cells in the first layer is at least 4 less than the
number of edges in the first layer, so we get our statement.



Upper Bound on the Number of Steps

Theorem (Number of Steps)

S ≤ C +
1
2

E − 3 (tight!)

(S: #Steps from cell to cell, C: #Cells, E : #Boundary edges)

Proof by induction on the number of split cells

Induction base: No split cell

Visit every cell in C − 1 steps

Return to s in ≤ 1
2E − 2 steps (Shortest Path Lemma)
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Analysis

Upper Bound on the Number of Steps

Now, we are able to give a first performance result for our exploration
strategy: The number of steps from cell to cell is bound by the
number of cells plus half the number of edges minus three. And this
bound is tight!
We can show this by an induction on the number of split cells. In the
induction base we have no split cell, thus, we need C − 1 steps to
explore the whole polygon and — using our lemma — at most 1

2 E − 2
for the path back to the start.



Competitivity

Theorem (Competitivity)

SmartDFS is 4
3 competitive (i. e., SSmartDFS ≤ 4

3 SOptimal)

Definition
Narrow passage: Corridors of width 1 or 2.

Definition
Uncritical polygon: neither narrow passages nor split cells in the first
layer.
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Analysis

Competitivity

The second performance result is, that our exploration strategy,
SmartDFS, is competitive with a factor of 4

3 , that is, the path
generated by our strategy is never longer than 4

3 times the optimal
solution.
In the following, corridors of width 1 or 2 play an important rule, so we
refer to them as narrow passages. More precisely, a cell belongs to a
narrow passage, if we can remove this cell without changing the layer
number of any other cell.
We call polygons, that have neigher narrow passages nor split in the
first layer uncritical polygons.



Competitivity (2)

Lemma (Edges in uncritical polygons)

For uncritical grid polygons: E(P) ≤ 2
3C(P) + 6

Proof.

Successively remove row or column
of at least 3 cells, maintaining the
uncritical property

Ends with 3×3 polygon, E = 2
3C +6

E ≤ 2
3C + 6 fulfilled in every step
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Competitivity (2)

For the special class of uncritical polygons, we can proof two
lemmata. First, we can bound the number of edges in such a polygon
by 2

3 times the number of cells plus 6.
To proof this, we remove successively a row or column of at least
three cells, keeping the property that the polygon is uncritical. This
decomposition ends with a three times three block of cells that fulfills
this equation. Now, if we reverse our decomposition process, we add
at most 2 edges and at least three cells in every step; thus, this
inequation is fulfulled in every step.



Competitivity (3)

Lemma (Exploration of uncritical polygons)

For uncritical grid polygons: S(P) ≤ C(P) + 1
2E(P)− 5.

Proof sketch

c

s
S(P) ≤ C(P) + 1

2E(P)− 3 shown

Used shortest path lemma
(sp(c, s) ≤ 1

2E(P)− 2)

Proof assumed c, s in the first layer!

Now: c in the 1-offset

2 steps gained!
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Analysis

Competitivity (3)

Second, we can show that we can explore uncritical polygons better
than general simple polygons.
We already showed this upper bound for arbitrary simple polygons. In
the induction base, we used the shortest path lemma, but to proof this
lemma, we assumed that both cells are in the first layer of P.
Now, we return from a cell in the 1-offset of P to s, and so we gain
two steps.



Competitivity Proof

Theorem (Competitivity)

SmartDFS is 4
3 competitive.

Proof

P1 P2 P3 P4

Remove narrow passages (explored optimally)

⇒ Split P into Pi

Consider Pi separately
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Competitivity Proof

With these two lemmata, we can show our theorem. First, we remove
all narrow passages, because they are explored optimally.
Thus, we split P into a sequence of polygons Pi , which can be
considered separately without changing the competitive factor.



Competitivity Proof (2)

Show S(Pi) ≤ 4
3C(Pi)− 2

by induction on the number of split cells in the first layer

Ind. base: No split cell ⇒ uncritical polygon ⇒

S(Pi) ≤ C(Pi) +
1
2

E(Pi)− 5 by exploration lemma

≤ C(Pi) +
1
2

(
2
3

C(Pi) + 6
)
− 5 by edges lemma

=
4
3

C(Pi)− 2
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Analysis

Competitivity Proof (2)

Now, we show this inequation by an induction on the number of split
cells in the first layer of Pi . If there is no split cell, then our polygon is
uncritical and our result follows from the two lemmatas on uncritical
polygons.



Competitivity Proof (3)

Ind. step, case 1: New component was never visited before

P ′′

P ′

Split Pi into P ′, P ′′

S(Pi) = S(P ′) + S(P ′′)

C(Pi) = C(P ′) + C(P ′′)− 1

S(Pi) = S(P ′) + S(P ′′)

≤ 4
3

C(P ′)− 2 +
4
3

C(P ′′)− 2

=
4
3

C(Pi) +
4
3
− 4

<
4
3

C(Pi)− 2
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Analysis

Competitivity Proof (3)

If there is a split cell in the first layer, we have to consider two cases.
In the first case, the new component was never visited before. We
split our polygon into P ′ and P ′′. It is easy to see that these two
equations for the number of cells and steps hold.
Now, we just use the induction hypothesis on the number of steps in
P ′ and P ′′ and with some simplifications we obtain our result.



Competitivity Proof (4)

Ind. step, case 2: Robot meets cell c′ touching split cell c

c

c

c’

c’

P ′′

P ′

P ′

P ′′

Split Pi into P ′, P ′′

Q := largest rectangle containing
both c, c′

C(Pi) = C(P ′) + C(P ′′)− |Q|

S(Pi) = S(P ′) + S(P ′′)− |Q|

≤ 4
3

C(P ′)+
4
3

C(P ′′)−4−|Q|

=
4
3

C(Pi) +
1
3

(|Q| − 6)− 2

<
4
3

C(Pi)− 2 �
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Analysis

Competitivity Proof (4)

In the second case, the has surrounded the new component and
meets a visited cell, c′, that touches the split cell c. Again, we split Pi

into P ′ and P ′′. Now, let Q be the largest rectangle that contains both
c and c′′.
Now, we have this equations for the number of cells and steps. Again,
we apply the induction hypothesis to P ′ and P ′′ and get our result.
This finishes the proof.



Summary

Problem: Online exploration of simple grid polygons

Lower Bound: 7
6

Exploration strategy SmartDFS

S ≤ C + 1
2E − 3

4
3 -competitive

ToDo: Close the gap!
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Thank you!
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