

Robot Swarms for Exploration and Triangulation of Unknown Environments

Sándor P. Fekete, <u>Tom Kamphans</u>, Alexander Kröller, Christiane Schmidt

Algorithms Group, Braunschweig University of Technology

- Given:
 - Mobile agentse.g. swarm of robots
 - Unknown environment
- Goal:
 - Triangulate environment

- Triangulation:
 - Place agents at vertices
 - Connect with diagonals

• Triangulation:

Place agents at vertices

Connect with diagonals

- New challenge: Limited range
 - Diagonal > range
 - No connection!

• Triangulation:

Place agents at vertices

Connect with diagonals

- New challenge: Limited range
 - Diagonal > range
 - No connection!
 - Additional agents needed

Applications

 Place guards with limited vision

 Place relays with limited comm. range

 Place beacons for robot localization

More Formally

- Given:
 - Unknown Polygon P
 - Mobile agents
 - Communication range r(r = 1)
 - Start point S on ∂P

- Task:
 - \bullet Triangulate P
 - No diagonal > 1
 - Minimize number of agents

Boundary of P

- Corridor of width ³/₄
- First 2 relays at the vertices
- Case I: Third relay on the boundary
- 9 relays

- Corridor of width ³/₄
- First 2 relays at the vertices
- Case I: Third relay on the boundary
- 9 relays
- Optimal: 8 relays

$$\frac{\text{Alg}}{\text{Opt}} \ge \frac{9}{8}$$

- Case II:
 Third relay in the interior
- 9 relays

- Case II:
 Third relay in the interior
- 9 relays
- Optimal: 8 relays

$$\frac{\text{Alg}}{\text{Opt}} \ge \frac{9}{8}$$

Theorem

No online algorithm for the triangulation of a polygon can achieve a competitive ratio better than 9/8.

Boundary:

• Place relays at distance ≤ 1 on ∂P

- Boundary:
 - Place relays at distance ≤ 1 on ∂P
 - Place second layer at distance $\leq \frac{\sqrt{3}}{2}$

- Boundary:
 - Place relays at distance ≤ 1 on ∂P
 - Place second layer at distance $\leq \frac{\sqrt{3}}{2}$
- Interior:
 - Regular grid

- Merge both:
 - Move relays outside the boundary layer
 - Connect

Costs: Boundary

- Boundary: 2 relays per unit
- Reflex vertex:3 additional relays

Convex vertex: no additional relays

$$2|\partial P| + 3n$$

Length of P's boundary

Number of vertices

Costs

• Interior k := Number of relays to ,,fill "the interior"

• Total:

$$2|\partial P| + 3n + k$$

≤ 6 Opt

- Optimum needs:
 - at least $|\partial P|$ relays
 - at least k relays
 - at least *n* relays

Costs

Theorem

There is a 6-competitive algorithm for triangulating polygons.

Summary

Problem: Triangulation with limited range

Upper bound: 6

