Robot Swarms for
 Exploration and Triangulation of Unknown Environments

Sándor P. Fekete,Tom Kamphans, Alexander Kröller, Christiane Schmidt

Algorithms Group, Braunschweig University of Technology

Problem Description

- Given:
- Mobile agents e.g. swarm of robots
- Unknown environment
- Goal:

- Triangulate environment

Problem Description

- Triangulation:
- Place agents at vertices
- Connect with diagonals

Problem Description

- Triangulation:
- Place agents at vertices
- Connect with diagonals
- New challenge: Limited range
- Diagonal > range
- No connection!

Problem Description

- Triangulation:
- Place agents at vertices
- Connect with diagonals
- New challenge: Limited range
- Diagonal > range
- No connection!
- Additional agents needed

Applications

- Place guards with limited vision
- Place relays with limited comm. range
- Place beacons for robot localization

More Formally

- Given:
- Unknown Polygon P
- Mobile agents
- Communication range $r(r=1)$
- Task:
- Triangulate P
- No diagonal > 1
- Minimize number of agents
- Start point S on ∂P

Boundary of P

Lower Bound

- Corridor of width $3 / 4$
- First 2 relays at the vertices
- Case I:

Third relay on the boundary

- 9 relays

Lower Bound

- Corridor of width $3 / 4$
- First 2 relays at the vertices
- Case I:

Third relay on the boundary

- 9 relays
- Optimal: 8 relays

$$
\frac{\mathrm{Alg}}{\mathrm{Opt}} \geq \frac{9}{8}
$$

Lower Bound

- Case II:

Third relay in the interior

- 9 relays

Lower Bound

- Case II:

Third relay in the interior

- 9 relays
- Optimal: 8 relays

$$
\frac{\mathrm{Alg}}{\mathrm{Opt}} \geq \frac{9}{8}
$$

Lower Bound

Theorem
No online algorithm for the triangulation of a polygon can achieve a competitive ratio better than 9/8.

Online Triangulation

- Boundary:
- Place relays at distance ≤ 1 on ∂P

Online Triangulation

- Boundary:
- Place relays at distance ≤ 1 on ∂P
- Place second layer at distance $\leq \frac{\sqrt{3}}{2}$

Online Triangulation

- Boundary:
- Place relays at distance ≤ 1 on ∂P
- Place second layer at distance $\leq \frac{\sqrt{3}}{2}$
- Interior:
- Regular grid

Online Triangulation

- Merge both:
- Move relays outside the boundary layer
- Connect

Costs: Boundary

- Boundary: 2 relays per unit o
- Reflex vertex: 3 additional relays 0

- Convex vertex: no additional relays

$$
2|\partial P|+3 n
$$

Length of P s boundary
Number of vertices

Costs

- Interior
$k:=$ Number of relays to "fill" the interior
- Total: $2|\partial P|+$
- Optimum needs:
- at least $|\partial P|$ relays
- at least k relays
- at least n relays

Theorem

There is a 6-competitive algorithm for triangulating polygons.

Summary

Problem: Triangulation with limited range

Upper bound: 6

Lower bound: 9/8

Todo:
 Narrow the gap!

